The XMM-SERVS survey: new XMM–Newton point-source catalogue for the XMM-LSS field
Monthly Notices of the Royal Astronomical Society Oxford University Press 478:2 (2018) 2132-2163
Abstract:
We present an X-ray point-source catalogue from the XMM-Large Scale Structure (XMMLSS) survey region, one of the XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS) fields. We target the XMM-LSS region with 1.3 Ms of new XMM-Newton AO-15 observations, transforming the archival X-ray coverage in this region into a 5.3 deg2contiguous field with uniform X-ray coverage totaling 2.7 Ms of flare-filtered exposure, with a 46 ks median PN exposure time. We provide an X-ray catalogue of 5242 sources detected in the soft (0.5-2 keV), hard (2-10 keV), and/or full (0.5-10 keV) bands with a 1 per cent expected spurious fraction determined from simulations. A total of 2381 new X-ray sources are detected compared to previous source catalogues in the same area. Our survey has flux limits of 1.7 × 10-15, 1.3 × 10-14, and 6.5 × 10-15erg cm-2s-1over 90 per cent of its area in the soft, hard, and full bands, respectively, which is comparable to those of the XMM-COSMOS survey. We identify multiwavelength counterpart candidates for 99.9 per cent of the X-ray sources, of which 93 per cent are considered as reliable based on their matching likelihood ratios. The reliabilities of these high-likelihood-ratio counterparts are further confirmed to be ≈97 per cent reliable based on deep Chandra coverage over ≈5 per cent of the XMM-LSS region. Results of multiwavelength identifications are also included in the source catalogue, along with basic optical-to-infrared photometry and spectroscopic redshifts from publicly available surveys. We compute photometric redshifts for X-ray sources in 4.5 deg2of our field where forced-aperture multiband photometry is available; > 70 per cent of the X-ray sources in this subfield have either spectroscopic or high-quality photometric redshifts.Erratum for the Report “A precise measurement of the magnetic field in the corona of the black hole binary V404 Cygni” by Y. Dallilar, S. S. Eikenberry, A. Garner, R. D. Stelter, A. Gottlieb, P. Gandhi, P. Casella, V. S. Dhillon, T. R. Marsh, S. P. Littlefair, L. Hardy, R. Fender, K. Mooley, D. J. Walton, F. Fuerst, M. Bachetti, A. J. Castro-Tirado, M. Charcos, M. L. Edwards, N. M. Lasso-Cabrera, A. Marin-Franch, S. N. Raines, K. Ackley, J. G. Bennett, A. J. Cenarro, B. Chinn, H. V. Donoso, R. Frommeyer, K. Hanna, M. D. Herlevich, J. Julian, P. Miller, S. Mullin, C. H. Murphey, C. Packham, F. Varosi, C. Vega, C. Warner, A. N. Ramaprakash, M. Burse, S. Punnadi, P. Chordia, A. Gerarts, H. de Paz Martín, M. Martín Calero, R. Scarpa, S. Fernandez Acosta, W. M. Hernández Sánchez, B. Siegel, F. Francisco Pérez, H. D. Viera Martín, J. A. Rodríguez Losada, A. Nuñez, Á. Tejero, C. E. Martín González, C. Cabrera Rodríguez, J. Molgó, J. Esteban Rodriguez, J. I. Fernández Cáceres, L. A. Rodríguez García, M. Huertas Lopez, R. Dominguez, T. Gaggstatter, A. Cabrera Lavers, S. Geier, P. Pessev, A. Sarajedini
Science American Association for the Advancement of Science (AAAS) (2018)
Photometric redshifts for the next generation of deep radio continuum surveys - II. Gaussian processes and hybrid estimates
Monthly Notices of the Royal Astronomical Society Oxford University Press 477:4 (2018) 5177-5190
Abstract:
Building on the first paper in this series (Duncan et al. 2018), we present a study investigating the performance of Gaussian process photometric redshift (photo-z) estimates for galaxies and active galactic nuclei detected in deep radio continuum surveys. A Gaussian process redshift code is used to produce photo-z estimates targeting specific subsets of both the AGN population - infrared, X-ray and optically selected AGN - and the general galaxy population. The new estimates for the AGN population are found to perform significantly better at z > 1 than the template-based photo-z estimates presented in our previous study. Our new photo-z estimates are then combined with template estimates through hierarchical Bayesian combination to produce a hybrid consensus estimate that outperforms both of the individual methods across all source types. Photo-z estimates for radio sources that are X-ray sources or optical/IR AGN are significantly improved in comparison to previous template-only estimates - with outlier fractions and robust scatter reduced by up to a factor of ∼4. The ability of our method to combine the strengths of the two input photo-z techniques and the large improvements we observe illustrate its potential for enabling future exploitation of deep radio continuum surveys for both the study of galaxy and black hole co-evolution and for cosmological studies.SPLASH-SXDF multi-wavelength photometric catalog
Astrophysical Journal Supplement Series American Astronomical Society 235:2 (2018) 36