An elevation of 0.1 light-seconds for the optical jet base in an accreting Galactic black hole system
(2017)
Up and Down the Black Hole Radio/X-Ray Correlation: The 2017 Mini-outbursts from Swift J1753.5−0127
The Astrophysical Journal American Astronomical Society 848:2 (2017) 92
Multi-messenger observations of a binary neutron star merger
Astrophysical Journal Letters Institute of Physics 848:2 (2017) L12
Abstract:
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼1.7s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40+8−8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M⊙. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼40Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼9 and ∼16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.On the maximum energy of non-thermal particles in the primary hotspot of Cygnus A
Monthly Notices of the Royal Astronomical Society Oxford University Press 473:3 (2017) 3500-3506
Abstract:
We study particle acceleration and magnetic field amplification in the primary hotspot in the northwest jet of radiogalaxy Cygnus A. By using the observed flux density at 43 GHz in a well resolved region of this hotspot, we determine the minimum value of the jet density and constrain the magnitude of the magnetic field. We find that a jet with density greater than $5\times 10^{-5}$ cm$^{-3}$ and hotspot magnetic field in the range 50-400 $\mu$G are required to explain the synchrotron emission at 43 GHz. The upper-energy cut-off in the hotspot synchrotron spectrum is at a frequency < $5\times 10^{14}$ Hz, indicating that the maximum energy of non-thermal electrons accelerated at the jet reverse shock is $E_{e, \rm max} \sim 0.8$ TeV in a magnetic field of 100 $\mu$G. Based on the condition that the magnetic-turbulence scale length has to be larger than the plasma skin depth, and that the energy density in non-thermal particles cannot violate the limit imposed by the jet kinetic luminosity, we show that $E_{e,\rm max}$ cannot be constrained by synchrotron losses as traditionally assumed. In addition to that, and assuming that the shock is quasi-perpendicular, we show that non-resonant hybrid instabilities generated by the streaming of cosmic rays with energy $E_{e, \rm max}$ can grow fast enough to amplify the jet magnetic field up to 50-400 $\mu$G and accelerate particles up to the maximum energy $E_{e, \rm max}$ observed in the Cygnus A primary hotspot.Photometric redshifts for the next generation of deep radio continuum surveys – I. Template fitting
Monthly Notices of the Royal Astronomical Society Oxford University Press 473:2 (2017) 2655-2672