MeerKLASS: MeerKAT large area synoptic survey

(2017)

Authors:

M Cluver, M Hilton, M Jarvis, GIG Jozsa, L Leeuw, O Smirnov, R Taylor, F Abdalla, J Afonso, D Alonso, D Bacon, BA Bassett, G Bernardi, P Bull, S Camera, HC Chiang, S Colafrancesco, Pedro Ferreira, J Fonseca, KVD Heyden, I Heywood, K Knowles, M Lochner, Y-Z Ma, R Maartens, S Makhathini, K Moodley, A Pourtsidou, M Prescott, J Sievers, K Spekkens, M Vaccari, A Weltman, I Whittam, A Witzemann, L Wolz, JTL Zwart

Abstract:

We discuss the ground-breaking science that will be possible with a wide area survey, using the MeerKAT telescope, known as MeerKLASS (MeerKAT Large Area Synoptic Survey). The current specifications of MeerKAT make it a great fit for science applications that require large survey speeds but not necessarily high angular resolutions. In particular, for cosmology, a large survey over $\sim 4,000 \, {\rm deg}^2$ for $\sim 4,000$ hours will potentially provide the first ever measurements of the baryon acoustic oscillations using the 21cm intensity mapping technique, with enough accuracy to impose constraints on the nature of dark energy. The combination with multi-wavelength data will give unique additional information, such as exquisite constraints on primordial non-Gaussianity using the multi-tracer technique, as well as a better handle on foregrounds and systematics. Such a wide survey with MeerKAT is also a great match for HI galaxy studies, providing unrivalled statistics in the pre-SKA era for galaxies resolved in the HI emission line beyond local structures at z > 0.01. It will also produce a large continuum galaxy sample down to a depth of about 5\,$\mu$Jy in L-band, which is quite unique over such large areas and will allow studies of the large-scale structure of the Universe out to high redshifts, complementing the galaxy HI survey to form a transformational multi-wavelength approach to study galaxy dynamics and evolution. Finally, the same survey will supply unique information for a range of other science applications, including a large statistical investigation of galaxy clusters as well as produce a rotation measure map across a huge swathe of the sky. The MeerKLASS survey will be a crucial step on the road to using SKA1-MID for cosmological applications and other commensal surveys, as described in the top priority SKA key science projects (abridged).

The Arcminute Microkelvin Imager Catalogue of Gamma-ray Burst afterglows at 15.7 GHz

(2017)

Authors:

GE Anderson, TD Staley, AJ van der Horst, RP Fender, A Rowlinson, KP Mooley, JW Broderick, RAMJ Wijers, C Rumsey, DJ Titterington

Up and Down the Black Hole Radio/X-ray Correlation: the 2017 mini-outbursts from Swift J1753.5-0127

(2017)

Authors:

RM Plotkin, J Bright, JCA Miller-Jones, AW Shaw, JA Tomsick, TD Russell, G-B Zhang, DM Russell, RP Fender, J Homan, P Atri, F Bernardini, JD Gelfand, F Lewis, TM Cantwell, SH Carey, KJB Grainge, J Hickish, YC Perrott, N Razavi-Ghods, AMM Scaife, PF Scott, DJ Titterington

Paving the way to simultaneous multi-wavelength astronomy

(2017)

Authors:

MJ Middleton, P Casella, P Gandhi, E Bozzo, G Anderson, N Degenaar, I Donnarumma, G Israel, C Knigge, A Lohfink, S Markoff, T Marsh, N Rea, S Tingay, K Wiersema, D Altamirano, D Bhattacharya, WN Brandt, S Carey, P Charles, M Diaz Trigo, C Done, M Kotze, S Eikenberry, R Fender, P Ferruit, F Fuerst, J Greiner, A Ingram, L Heil, P Jonker, S Komossa, B Leibundgut, T Maccarone, J Malzac, V McBride, J Miller-Jones, M Page, EM Rossi, DM Russell, T Shahbaz, GR Sivakoff, M Tanaka, DJ Thompson, M Uemura, P Uttley, G van Moorsel, M Van Doesburgh, B Warner, B Wilkes, J Wilms, P Woudt

Cosmic ray acceleration by relativistic shocks: Limits and estimates

Monthly Notices of the Royal Astronomical Society Oxford University Press (2017)

Authors:

AR Bell, AT Araudo, James H Matthews, Katherine M Blundell

Abstract:

We examine limits to the energy to which cosmic rays can be accelerated by relativistic shocks, showing that acceleration of light ions as high as 100 EeV is unlikely. The implication of our estimates is that if ultra-high energy cosmic rays are accelerated by shocks, then those shocks are probably not relativistic.