星系空间取向的理论和观测研究

SCIENTIA SINICA Physica, Mechanica & Astronomica Science China Press 47:4 (2017) 049803

A strongly truncated inner accretion disc in the Rapid Burster

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press (OUP) 466:1 (2017) l98-l102

Authors:

J van den Eijnden, T Bagnoli, N Degenaar, AM Lohfink, ML Parker, JJM in T Zand, AC Fabian

Resolved, expanding jets in the Galactic black hole candidate XTE J1908+094

(2017)

Authors:

AP Rushton, JCA Miller-Jones, PA Curran, GR Sivakoff, MP Rupen, Z Paragi, RE Spencer, J Yang, D Altamirano, T Belloni, RP Fender, HA Krimm, D Maitra, S Migliari, DM Russell, TD Russell, R Soria, V Tudose

iPTF16fnl: a faint and fast tidal disruption event in an E+A galaxy

(2017)

Authors:

N Blagorodnova, S Gezari, T Hung, SR Kulkarni, SB Cenko, DR Pasham, L Yan, I Arcavi, S Ben-Ami, BD Bue, T Cantwell, Y Cao, AJ Castro-Tirado, R Fender, C Fremling, A Gal-Yam, AYQ Ho, A Horesh, G Hosseinzadeh, MM Kasliwal, AKH Kong, RR Laher, G Leloudas, R Lunnan, FJ Masci, K Mooley, JD Neill, P Nugent, M Powell, AF Valeev, PM Vreeswijk, R Walters, P Wozniak

The XXL survey: first results and future

Astronomische Nachrichten Wiley 338:2-3 (2017) 334-341

Authors:

M Pierre, C Adami, M Birkinshaw, Julien Devriendt, Matthew J Jarvis

Abstract:

The XXL survey currently covers two 25 deg2 patches with XMM observations of ~ 10ks. We summarise the scientific results associated with the first release of the XXL data set, that occurred mid 2016. We review several arguments for increasing the survey depth to 40 ks during the next decade of XMM operations. X-ray (z < 2) cluster, (z < 4) AGN and cosmic background survey science will then benefit from an extraordinary data reservoir. This, combined with deep multi-λ observations, will lead to solid standalone cosmological constraints and provide a wealth of information on the formation and evolution of AGN, clusters and the X-ray background. In particular, it will offer a unique opportunity to pinpoint the z > 1 cluster density. It will eventually constitute a reference study and an ideal calibration field for the upcoming eROSITA and Euclid missions.