The Wide-field Infrared Survey Explorer properties of complete samples of radio-loud active galactic nucleus

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 438:2 (2014) 1149-1161

Authors:

G Gürkan, MJ Hardcastle, MJ Jarvis

Astronomy below the survey threshold in the SKA era

Proceedings of Science 9-13-June-2014 (2014)

Authors:

J Zwart, J Wall, A Karim, C Jackson, R Norris, J Condon, J Afonso, I Heywood, M Jarvis, F Navarrete, I Prandoni, E Rigby, H Rottgering, M Santos, M Sargent, N Seymour, R Taylor, T Vernstrom

Abstract:

Astronomy at or below the survey threshold has expanded significantly since the publication of the original Science with the Square Kilometer Array in 1999 and its update in 2004. The techniques in this regime may be broadly (but far from exclusively) defined as confusion or P(D) analyses (analyses of one-point statistics), and stacking, accounting for the flux-density distribution of noise-limited images co-added at the positions of objects detected/isolated in a different waveband. Here we discuss the relevant issues, present some examples of recent analyses, and consider some of the consequences for the design and use of surveys with the SKA and its pathfinders.

Beyond stacking: A maximum-likelihood method to constrain radio source counts below the detection threshold

Monthly Notices of the Royal Astronomical Society 437:3 (2014) 2270-2278

Authors:

K Mitchell-Wynne, MG Santos, J Afonso, MJ Jarvis

Abstract:

We present a statistical method based on a maximum-likelihood approach to constrain the number counts of extragalactic sources below the nominal flux-density limit of continuum imaging surveys. We extract flux densities from a radio map using positional information from an auxiliary catalogue and show that we can model the number counts of this undetected population down to flux-density levels well below the detection threshold of the radio survey. We demonstrate the capabilities that our method will have with future generation wide-area radio surveys by performing simulations over various sky areas. We show that it is possible to accurately constrain the number counts of the simulated distribution down to one-tenth of the flux noise rms with just a sky area of 100 deg2.We then test the application of our method using data from the Faint Images of the Radio Sky at Twenty-Centimetres survey (FIRST). We extract flux densities from the FIRST map, sensitive to 150 μJy beam-1 (1 σ), using the positional information from a catalogue in the same field, also acquired at the same frequency, sensitive to 12 μJy beam-1 (1 σ). Implementing our method, with known source positions, we are able to recover the right differential number counts of the noise-dominated FIRST map fluxes down to a flux-density level which is one-tenth the FIRST detection threshold. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

Cosmology with a SKA HI intensity mapping survey

Proceedings of Science 9-13-June-2014 (2014)

Authors:

MG Santos, P Bull, D Alonso, S Camera, PG Ferreira, G Bernardi, R Maartens, M Viel, F Villaescusa-Navarro, FB Abdalla, JM Jarvis, RB Metcalf, A Pourtsidou, L Wolz

Abstract:

HI intensity mapping (IM) is a novel technique capable of mapping the large-scale structure of the Universe in three dimensions and delivering exquisite constraints on cosmology, by using HI as a biased tracer of the dark matter density field. This is achieved by measuring the intensity of the redshifted 21cm line over the sky in a range of redshifts without the requirement to resolve individual galaxies. In this chapter, we investigate the potential of SKA1 to deliver HI intensity maps over a broad range of frequencies and a substantial fraction of the sky. By pinning down the baryon acoustic oscillation and redshift space distortion features in the matter power spectrum - Thus determining the expansion and growth history of the Universe - These surveys can provide powerful tests of dark energy models and modifications to General Relativity. They can also be used to probe physics on extremely large scales, where precise measurements of spatial curvature and primordial non-Gaussianity can be used to test inflation; on small scales, by measuring the sum of neutrino masses; and at high redshifts where non-standard evolution models can be probed. We discuss the impact of foregrounds as well as various instrumental and survey design parameters on the achievable constraints. In particular we analyse the feasibility of using the SKA1 autocorrelations to probe the large-scale signal.

Discovery of carbon radio recombination lines in absorption towards cygnus A

Monthly Notices of the Royal Astronomical Society 437:4 (2014) 3506-3515

Authors:

JBR Oonk, RJ van Weeren, F salgado, LK Morabito, AGGM Tielens, HJA Rottgering, A Asgekar, GJ White, A Alexov, J Anderson, IM Avruch, F Batejat, R Beck, ME Bell, I van Bemmel, MJ Bentum, G Bernardi, P Best, A Bonafede, F Breitling, M Brentjens, J Broderick, M Brüggen, HR Butcher, B Ciardi, JE Conway, A Corstanje, F de Gasperin, E de Geus, M de Vos, S Duscha, J Eislöffel, D Engels, J van Enst, H Falcke, RA Fallows, R Fender, C Ferrari, W Frieswijk, MA Garrett, J Griemeier, JP Hamaker, TE Hassa, G Heald, JWT Hessels, M Hoeft, A Horneffer, A van der Horst, M Iacobelli, NJ Jackson, E Juette, A Karastergiou, W Klijn, J Kohler, VI Kondratiev, M Kramer, M Kuniyoshi, G Kuper, J van Leeuwen, P Maat, G Macario, G Mann, S Markoff, JP McKean, M Mevius, JCA Miller-Jones, JD Mol, DD Mulcahy, H Munk, MJ Norden, E Orru, H Paas, M Pandey-Pommier, VN Pandey, R Pizzo, AG Polatidis, W Reich, AMM scaife, A schoenmakers, D schwarz, A shulevski, J sluman, O smirnov, C Sobey, BW Stappers, M steinmetz, J swinbank, M Tagger, Y Tang, C Tasse, S ter Veen, S Thoudam, C Toribio, R van Nieuwpoort, R Vermeulen, C Vocks, C Vogt, RAMJ Wijers, MW Wise, O Wucknitz

Abstract:

We present the first detection of carbon radio recombination line absorption along the line of sight to Cygnus A. The observations were carried out with the Low Frequency Array in the 33-57MHz range. These low-frequency radio observations provide us with a new line of sight to study the diffuse, neutral gas in our Galaxy. To our knowledge this is the first time that foreground Milky Way recombination line absorption has been observed against a bright extragalactic background source. By stacking 48 carbon α lines in the observed frequency range we detect carbon absorption with a signal-to-noise ratio of about 5. The average carbon absorption has a peak optical depth of 2 × 10-4, a line width of 10 km s-1 and a velocity of +4 kms-1 with respect to the local standard of rest. The associated gas is found to have an electron temperature Te ̃ 110K and density ne ̃ 0.06 cm-3. These properties imply that the observed carbon a absorption likely arises in the cold neutral medium of the Orion arm of the Milky Way. Hydrogen and helium lines were not detected to a 3σ peak optical depth limit of 1.5 × 10-4 for a 4 kms-1 channel width. Radio recombination lineσ aσσociated with Cygnuσ A itself were also searched for, but are not detected. We set a 3σ upper limit of 1.5 ×; 10-4 for the peak optical depth of these lines for a 4 kms-1 channel width. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.