Multiwavelength campaign on Mrk 509: XI. Reverberation of the Fe K α line

Astronomy and Astrophysics 549 (2013)

Authors:

G Ponti, M Cappi, E Costantini, S Bianchi, JS Kaastra, B De Marco, RP Fender, PO Petrucci, GA Kriss, KC Steenbrugge, N Arav, E Behar, G Branduardi-Raymont, M Dadina, J Ebrero, P Lubiński, M Mehdipour, S Paltani, C Pinto, F Tombesi

Abstract:

Context.We report on a detailed study of the Fe K emission/absorption complex in the nearby, bright Seyfert 1 galaxy Mrk 509. The study is part of an extensive XMM-Newton monitoring consisting of 10 pointings (∼60 ks each) about once every 4 days, and includes a reanalysis of previous XMM-Newton and Chandra observations. Aims.We aim at understanding the origin and location of the Fe K emission and absorption regions. Methods.We combine the results of time-resolved spectral analysis on both short and long time-scales including model-independent rms spectra. Results.Mrk 509 shows a clear (EW = 58±4 eV) neutral Fe Ka emission line that can be decomposed into a narrow (s = 0.027 keV) component (found in the Chandra HETG data) plus a resolved (s = 0.22 keV) component.We find the first successful measurement of a linear correlation between the intensity of the resolved line component and the 3-10 keV flux variations on time scales of years down to a few days. The Fe Ka reverberates the hard X-ray continuum without any measurable lag, suggesting that the region producing the resolved Fe Ka component is located within a few light days to a week (r ≲ 103 rg) from the black hole (BH). The lack of a redshifted wing in the line poses a lower limit of =40 rg for its distance from the BH. The Fe Ka could thus be emitted from the inner regions of the BLR, i.e. within the ∼80 light days indicated by the Hß line measurements. In addition to these two neutral Fe Ka components, we confirm the detection of weak (EW ∼ 8-20 eV) ionised Fe K emission. This ionised line can be modelled with either a blend of two narrow Fe xxv and Fe xxvi emission lines (possibly produced by scattering from distant material) or with a single relativistic line produced, in an ionised disc, down to a few rg from the BH. In the latter interpretation, the presence of an ionised standard a-disc, down to a few rg, is consistent with the source high Eddington ratio. Finally, we observe a weakening/disappearing of the mediumand high-velocity high-ionisation Fe K wind features found in previous XMM-Newton observations. Conclusions. This campaign has made the first reverberation measurement of the resolved component of the Fe Ka line possible, from which we can infer a location for the bulk of its emission at a distance of r ∼ 40-1000 rg from the BH. © 2012 ESO.

Radio continuum surveys with square kilometre array pathfinders

Publications of the Astronomical Society of Australia 30:1 (2013)

Authors:

RP Norris, J Afonso, D Bacon, R Beck, M Bell, RJ Beswick, P Best, S Bhatnagar, A Bonafede, G Brunetti, T Budavári, R Cassano, JJ Condon, C Cress, A Dabbech, I Feain, R Fender, C Ferrari, BM Gaensler, G Giovannini, M Haverkorn, G Heald, K Van Der Heyden, AM Hopkins, M Jarvis, M Johnston-Hollitt, R Kothes, H Van Langevelde, J Lazio, MY Mao, A Martínez-Sansigre, D Mary, K McAlpine, E Middelberg, E Murphy, P Padovani, Z Paragi, I Prandoni, A Raccanelli, E Rigby, IG Roseboom, H Röttgering, J Sabater, M Salvato, AMM Scaife, R Schilizzi, N Seymour, DJB Smith, G Umana, GB Zhao, PC Zinn

Abstract:

In the lead-up to the Square Kilometre Array (SKA) project, several next-generation radio telescopes and upgrades are already being built around the world. These include APERTIF (The Netherlands), ASKAP (Australia), e-MERLIN (UK), VLA (USA), e-EVN (based in Europe), LOFAR (The Netherlands), MeerKAT (South Africa), and the Murchison Widefield Array. Each of these new instruments has different strengths, and coordination of surveys between them can help maximise the science from each of them. A radio continuum survey is being planned on each of them with the primary science objective of understanding the formation and evolution of galaxies over cosmic time, and the cosmological parameters and large-scale structures which drive it. In pursuit of this objective, the different teams are developing a variety of new techniques, and refining existing ones. To achieve these exciting scientific goals, many technical challenges must be addressed by the survey instruments. Given the limited resources of the global radio-astronomical community, it is essential that we pool our skills and knowledge. We do not have sufficient resources to enjoy the luxury of re-inventing wheels. We face significant challenges in calibration, imaging, source extraction and measurement, classification and cross-identification, redshift determination, stacking, and data-intensive research. As these instruments extend the observational parameters, we will face further unexpected challenges in calibration, imaging, and interpretation. If we are to realise the full scientific potential of these expensive instruments, it is essential that we devote enough resources and careful study to understanding the instrumental effects and how they will affect the data. We have established an SKA Radio Continuum Survey working group, whose prime role is to maximise science from these instruments by ensuring we share resources and expertise across the projects. Here we describe these projects, their science goals, and the technical challenges which are being addressed to maximise the science return. © 2013 Astronomical Society of Australia.

Sub-millimetre source identifications and the microjansky source population at 8.4ghz in thewilliam herschel deep field

Monthly Notices of the Royal Astronomical Society 428:2 (2013) 935-951

Authors:

I Heywood, RM Bielby, MD Hill, N Metcalfe, S Rawlings, T Shanks, OM Smirnov

Abstract:

Sub-millimetre observations of the William Herschel Deep Field (WHDF) using the Large Apex Bolometer Camera (LABOCA) revealed possible sub-mm counterparts for two X-rayabsorbed quasars. The primary aim here is to exploit ExpandedVery LargeArray (EVLA) radio continuum imaging at 8.4GHz to establish the absorbed quasars as radio/sub-mm sources. The main challenge in reducing the WHDF EVLA data was the presence of a strong 4C source at the field edge. A new calibration algorithm was applied to the data to model and subtract this source. The resulting thermal noise limited radiomap covers a sky area which includes the 16× 16arcmin2 Extended WHDF. It contains 41 radio sources above the 4σ detection threshold, 17 of which have primary beam corrected flux densities. The radio observations show that the two absorbed active galactic nuclei (AGN) with LABOCA detections are also coincident with radio sources, confirming the tendency for X-ray-absorbed AGN to be sub-mm bright. These two sources also show strong ultraviolet excess (UVX) which suggest that the nuclear sightline is gas absorbed but not dust absorbed. Of the three remaining LABOCA sources within the ≈5arcmin half-power diameter of the EVLA primary beam, one is identified with a faint nuclear X-ray/radio source in a nearby galaxy, one with a faint radio source and the other is unidentified in any other band. More generally, differential radio source counts calculated from the beam-corrected data are in good agreement with previous observations, showing atS < 50μJy a significant excess over a pure AGN model. In the full area, of 10 sources fainter than this limit, six have optical counterparts of which three are UVX (i.e. likely quasars) including the two absorbed quasar LABOCA sources. The other faint radio counterparts are not UVX but are only slightly less blue and likely to be star-forming/merging galaxies, predominantly at lower luminosities and redshifts. The four faint, optically unidentified radio sources may be either dust-obscured quasars or galaxies. These high-redshift obscured AGN and lower redshift star-forming populations are thus the main candidates to explain the observed excess in the faint source counts and hence also the excess radio background found previously by the Absolute Radiometer for Cosmology, Astrophysics and Diffuse Emission (ARCADE2) experiment. © 2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

The 'universal' radio/X-ray flux correlation: The case study of the black hole GX 339-4

Monthly Notices of the Royal Astronomical Society 428:3 (2013) 2500-2515

Authors:

S Corbel, M Coriat, C Brocksopp, AK Tzioumis, RP Fender, JA Tomsick, MM Buxton, CD Bailyn

Abstract:

The existing radio and X-ray flux correlation for Galactic black holes in the hard and quiescent states relies on a sample which is mostly dominated by two sources (GX 339-4 and V404 Cyg) observed in a single outburst. In this paper, we report on a series of radio and X-ray observations of the recurrent black hole GX 339-4 with the Australia Telescope Compact Array, the Rossi X-ray Timing Explorer and the Swift satellites. With our new long-term campaign, we now have a total of 88 quasi-simultaneous radio and X-ray observations of GX 339-4 during its hard state, covering a total of seven outbursts over a 15-yr period. Our new measurements represent the largest sample for a stellar mass black hole, without any bias from distance uncertainties, over the largest flux variations and down to a level that could be close to quiescence, making GX 339-4 the reference source for comparison with other accreting sources (black holes, neutrons stars, white dwarfs and active galactic nuclei). Our results demonstrate a very strong and stable coupling between radio and X-ray emission, despite several outbursts of different nature and separated by a period of quiescence. The radio and X-ray luminosity correlation of the form LX α L0.62±0.01Rad confirms the non-linear coupling between the jet and the inner accretion flow powers and better defines the standard correlation track in the radio-X-ray diagram for stellar mass black holes. We further note epochs of deviations from the fit that significantly exceed the measurement uncertainties, especially during the time of formation and destruction of the self-absorbed compact jets. The jet luminosity could appear brighter (up to a factor of 2) during the decay compared to the rise for a given X-ray luminosity, possibly related to the compact jets. We furthermore connect the radio/X-ray measurements to the near-infrared/X-ray empirical correlation in GX 339-4, further demonstrating a coupled correlation between these three frequency ranges. The level of radio emission would then be tied to the near-infrared emission, possibly by the evolution of the broad-band properties of the jets. We further incorporated our new data of GX 339-4 in a more global study of black hole candidates strongly supporting a scale invariance in the jet-accretion coupling of accreting black holes, and confirms the existence of two populations of sources in the radio/X-ray diagram. © 2012 The Authors.

The optical counterpart of the bright x-ray transient swift j1745-26

Monthly Notices of the Royal Astronomical Society 432:2 (2013) 1133-1137

Authors:

T Muñoz-Darias, A De Ugarte Postigo, DM Russell, S Guziy, J Gorosabel, J Casares, M Armas Padilla, PA Charles, RP Fender, TM Belloni, F Lewis, S Motta, A Castro-Tirado, CG Mundell, R Sánchez-Ramírez, CC Thöne

Abstract:

We present a 30-day monitoring campaign of the optical counterpart of the bright X-ray transient Swift J1745-26, starting only 19min after the discovery of the source.We observe the system peaking at i~17.6 on day six (MJD 561 92) to then decay at a rate of ~0.04 mag d-1. We show that the optical peak occurs at least 3 d later than the hard X-ray (15-50 keV) flux peak. Our measurements result in an outburst amplitude greater than 4.3 mag, which favours an orbital period ≲21 h and a companion star with a spectral type later than ~A0. Spectroscopic observations taken with the Gran Telescopio de Canarias 10.4 m telescope reveal a broad (full width at half-maximum ~1100 km s-1), double-peaked Ha emission line from which we constrain the radial velocity semi-amplitude of the donor to be K2 > 250 km s-1. The breadth of the line and the observed optical and X-ray fluxes suggest that Swift J1745-26 is a new black hole candidate located closer than ~7 kpc. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.