The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) survey design, reductions, and detections

Astrophysical Journal American Astronomical Society 923:2 (2021) 217

Authors:

Karl Gebhardt, Erin Mentuch Cooper, Robin Ciardullo, Matthew Jarvis, Gavin Dalton

Abstract:

We describe the survey design, calibration, commissioning, and emission-line detection algorithms for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). The goal of HETDEX is to measure the redshifts of over a million Lyα emitting galaxies between 1.88 < z < 3.52, in a 540 deg2 area encompassing a co-moving volume of 10.9 Gpc3. No pre-selection of targets is involved; instead the HETDEX measurements are accomplished via a spectroscopic survey using a suite of wide-field integral field units distributed over the focal plane of the telescope. This survey measures the Hubble expansion parameter and angular diameter distance, with a final expected accuracy of better than 1%. We detail the project’s observational strategy, reduction pipeline, source detection, and catalog generation, and present initial results for science verification in the COSMOS, Extended Groth Strip, and GOODS-N fields. We demonstrate that our data reach the required specifications in throughput, astrometric accuracy, flux limit, and object detection, with the end products being a catalog of emission-line sources, their object classifications, and flux-calibrated spectra.

The detection of radio emission from known X-ray flaring star EXO 040830−7134.7

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 510:1 (2021) 1083-1092

Authors:

LN Driessen, DRA Williams, I McDonald, BW Stappers, DAH Buckley, RP Fender, PA Woudt

The detection of pulsed emission at the spin period of the white dwarf in AE Aquarii in MeerKAT and Fermi-LAT data

Sissa Medialab Srl (2021) 046

Authors:

Spencer T Madzime, Pieter Meintjes, Hendrik van Heerden, Krishna Kumar Singh, David Buckley, Patrick Alan Woudt, Rob Fender

Constraining the properties of dense neutron star cores: The case of the low-mass X-ray binary HETE J1900.1-2455

ArXiv 2112.09711 (2021)

Authors:

N Degenaar, D Page, J van den Eijnden, MV Beznogov, R Wijnands, M Reynolds

Deep Extragalactic VIsible Legacy Survey (DEVILS): identification of AGN through SED fitting and the evolution of the bolometric AGN luminosity function

Monthly Notices of the Royal Astronomical Society Oxford University Press 509:4 (2021) 4940-4961

Authors:

Jessica E Thorne, Aaron SG Robotham, Luke JM Davies, Sabine Bellstedt, Michael JI Brown, Scott M Croom, Ivan Delvecchio, Brent Groves, Matt J Jarvis, Stanislav S Shabala, Nick Seymour, Imogen H Whittam, Matias Bravo, Robin HW Cook, Simon P Driver, Benne Holwerda, Steven Phillipps, Malgorzata Siudek

Abstract:

Active galactic nuclei (AGN) are typically identified through radio, mid-infrared, or X-ray emission or through the presence of broad and/or narrow emission lines. AGN can also leave an imprint on a galaxy’s spectral energy distribution (SED) through the re-processing of photons by the dusty torus. Using the SED fitting code PROSPECT with an incorporated AGN component, we fit the far-ultraviolet to far-infrared SEDs of ∼494 000 galaxies in the D10-COSMOS field and ∼230 000 galaxies from the GAMA survey. By combining an AGN component with a flexible star formation and metallicity implementation, we obtain estimates for the AGN luminosities, stellar masses, star formation histories, and metallicity histories for each of our galaxies. We find that PROSPECT can identify AGN components in 91 per cent of galaxies pre-selected as containing AGN through narrow-emission line ratios and the presence of broad lines. Our PROSPECT-derived AGN luminosities show close agreement with luminosities derived for X-ray selected AGN using both the X-ray flux and previous SED fitting results. We show that incorporating the flexibility of an AGN component when fitting the SEDs of galaxies with no AGN has no significant impact on the derived galaxy properties. However, in order to obtain accurate estimates of the stellar properties of AGN host galaxies, it is crucial to include an AGN component in the SED fitting process. We use our derived AGN luminosities to map the evolution of the AGN luminosity function for 0 < z < 2 and find good agreement with previous measurements and predictions from theoretical models.