Constraints on simplified dark matter models involving an s -channel mediator with the ATLAS detector in pp collisions at s = 13 TeV

The European Physical Journal C SpringerOpen 84:10 (2024) 1102

Authors:

G Aad, E Aakvaag, B Abbott, S Abdelhameed, K Abeling, NJ Abicht, SH Abidi, M Aboelela, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, BS Acharya, A Ackermann, C Adam Bourdarios, L Adamczyk, SV Addepalli, MJ Addison, J Adelman, A Adiguzel, T Adye, AA Affolder, Y Afik, MN Agaras

Abstract:

This paper reports a summary of searches for a fermionic dark matter candidate in the context of theoretical models characterised by a mediator particle exchange in the s-channel. The data sample considered consists of pp collisions delivered by the Large Hadron Collider during its Run 2 at a centre-of-mass energy of s=13TeV and recorded by the ATLAS detector, corresponding to up to 140 fb-1. The interpretations of the results are based on simplified models where the new mediator particles can be spin-0, with scalar or pseudo-scalar couplings to fermions, or spin-1, with vector or axial-vector couplings to fermions. Exclusion limits are obtained from various searches characterised by final states with resonant production of Standard Model particles, or production of Standard Model particles in association with large missing transverse momentum.

Search for supersymmetry in final states with missing transverse momentum and charm-tagged jets using 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=$ 13 TeV with the ATLAS detector

ArXiv 2410.17824 (2024)

Search for a new scalar decaying into new spin-1 bosons in four-lepton final states with the ATLAS detector

ArXiv 2410.16781 (2024)

Search for displaced leptons in $\sqrt{s}=13$ TeV and $13.6$ TeV $pp$ collisions with the ATLAS detector

ArXiv 2410.16835 (2024)

Search for heavy resonances in final states with four leptons and missing transverse momentum or jets in pp collisions at s = 13 TeV with the ATLAS detector

Journal of High Energy Physics Springer 2024:10 (2024) 130

Authors:

G Aad, E Aakvaag, B Abbott, K Abeling, NJ Abicht, SH Abidi, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, BS Acharya, C Adam Bourdarios, L Adamczyk, SV Addepalli, MJ Addison, J Adelman, A Adiguzel, T Adye, AA Affolder, Y Afik, MN Agaras, J Agarwala, A Aggarwal, C Agheorghiesei

Abstract:

A search for a new heavy boson produced via gluon-fusion in the four-lepton channel with missing transverse momentum or jets is performed. The search uses proton-proton collision data equivalent to an integrated luminosity of 139 fb−1 at a centre-of-mass energy of 13 TeV collected by the ATLAS detector between 2015 and 2018 at the Large Hadron Collider. This study explores the decays of heavy bosons: R → SH and A → ZH, where R is a CP-even boson, A is a CP-odd boson, H is a CP-even boson, and S is considered to decay into invisible particles that are candidates for dark matter. In these processes, S → invisible and H → ZZ. The Z boson associated with the heavy scalar boson H decays into all decay channels of the Z boson. The mass range under consideration is 390–1300 (320–1300) GeV for the R (A) boson and 220–1000 GeV for the H boson. No significant deviation from the Standard Model backgrounds is observed. The results are interpreted as upper limits at a 95% confidence level on the cross-section times the branching ratio of the heavy resonances.