Search for same-charge top-quark pair production in pp collisions at s = 13 TeV with the ATLAS detector

Journal of High Energy Physics Springer 2025:2 (2025) 84

Authors:

G Aad, E Aakvaag, B Abbott, S Abdelhameed, K Abeling, NJ Abicht, SH Abidi, M Aboelela, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, BS Acharya, A Ackermann, C Adam Bourdarios, L Adamczyk, SV Addepalli, MJ Addison, J Adelman, A Adiguzel, T Adye, AA Affolder, Y Afik, MN Agaras

Abstract:

A search for the production of top-quark pairs with the same electric charge (tt or tt¯) is presented. The analysis uses proton-proton collision data at s = 13 TeV, recorded by the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb−1. Events with two same-charge leptons and at least two b-tagged jets are selected. Neural networks are employed to define two selections sensitive to additional couplings beyond the Standard Model that would enhance the production rate of same-sign top-quark pairs. No significant signal is observed, leading to an upper limit on the total production cross-section of same-sign top-quark pairs of 1.6 fb at 95% confidence level. Corresponding limits on the three Wilson coefficients associated with the Otu1, OQu1, and OQu8 operators in the Standard Model Effective Field Theory framework are derived.

Search for single-production of vector-like quarks decaying into Wb in the fully hadronic final state in pp collisions at s = 13 TeV with the ATLAS detector

Journal of High Energy Physics Springer 2025:2 (2025) 75

Authors:

G Aad, E Aakvaag, B Abbott, S Abdelhameed, K Abeling, NJ Abicht, SH Abidi, M Aboelela, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, BS Acharya, A Ackermann, C Adam Bourdarios, L Adamczyk, SV Addepalli, MJ Addison, J Adelman, A Adiguzel, T Adye, AA Affolder, Y Afik, MN Agaras

Abstract:

A search for T and Y vector-like quarks produced in proton-proton collisions at a centre-of-mass energy of 13 TeV and decaying into Wb in the fully hadronic final state is presented. The search uses 139 fb−1 of data collected by the ATLAS detector at the LHC from 2015 to 2018. The final state is characterised by a hadronically decaying W boson with large Lorentz boost and a b-tagged jet, which are used to reconstruct the invariant mass of the vector-like quark candidate. The main background is QCD multijet production, which is estimated using a data-driven method. Upon finding no significant excess in data, mass limits at 95% confidence level are obtained as a function of the global coupling parameter, κ. The observed lower limits on the masses of Y quarks with κ = 0.5 and κ = 0.7 are 2.0 TeV and 2.4 TeV, respectively. For T quarks, the observed mass limits are 1.4 TeV for κ = 0.5 and 1.9 TeV for κ = 0.7.

Search for the associated production of charm quarks and a Higgs boson decaying into a photon pair with the ATLAS detector

Journal of High Energy Physics Springer 2025:2 (2025) 45

Authors:

G Aad, E Aakvaag, B Abbott, S Abdelhameed, K Abeling, NJ Abicht, SH Abidi, M Aboelela, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, BS Acharya, A Ackermann, C Adam Bourdarios, L Adamczyk, SV Addepalli, MJ Addison, J Adelman, A Adiguzel, T Adye, AA Affolder, Y Afik, MN Agaras

Abstract:

A search for the production of a Higgs boson and one or more charm quarks, in which the Higgs boson decays into a photon pair, is presented. This search uses proton-proton collision data with a centre-of-mass energy of s = 13 TeV and an integrated luminosity of 140 fb−1 recorded by the ATLAS detector at the Large Hadron Collider. The analysis relies on the identification of charm-quark-containing jets, and adopts an approach based on Gaussian process regression to model the non-resonant di-photon background. The observed (expected, assuming the Standard Model signal) upper limit at the 95% confidence level on the cross-section for producing a Higgs boson and at least one charm-quark-containing jet that passes a fiducial selection is found to be 10.6 pb (8.8 pb). The observed (expected) measured cross-section for this process is 5.3 ± 3.2 pb (2.9 ± 3.1 pb).

Search for long-lived charged particles using large specific ionisation loss and time of flight in 140 $fb^{-1}$ of $pp$ collisions at $\sqrt{s}\ = 13$ TeV with the ATLAS detector

ArXiv 2502.06694 (2025)

Bounds on heavy axions with an X-ray free electron laser

Physical Review Letters American Physical Society 134:5 (2025) 55001

Authors:

Jack WD Halliday, Giacomo Marocco, Konstantin A Beyer, Charles Heaton, Motoaki Nakatsutsumi, Thomas R Preston, Charles Arrowsmith, Carsten Baehtz, Sebastian Goede, Oliver Humphries, Alejandro Laso Garcia, Richard Plackett, Pontus Svensson, Georgios Vacalis, Justin Wark, Daniel Wood, Ulf Zastrau, Robert Bingham, Ian Shipsey, Subir Sarkar, Gianluca Gregori

Abstract:

We present new exclusion bounds obtained at the European X-Ray Free Electron Laser facility (EuXFEL) on axionlike particles in the mass range $10^{-3}\,\mathrm{eV} \lesssim m_a \lesssim 10^{4}\,\mathrm{eV}$. Our experiment exploits the Primakoff effect via which photons can, in the presence of a strong external electric field, decay into axions, which then convert back into photons after passing through an opaque wall. While similar searches have been performed previously at a third-generation synchrotron [Yamaji et al., Phys.\ Lett.\ B 782, 523 (2018)], our work demonstrates improved sensitivity, exploiting the higher brightness of x-rays at EuXFEL.