Competition between charge ordering and ferromagnetism in manganese perovskites

Physica B: Condensed Matter 241-243 (1997) 295-302

Authors:

PG Radaelli, G Iannone, DE Cox, M Marezio, HY Hwang, SW Cheong

Abstract:

Manganese perovskites have recently been the subject of renewed attention, due to the "colossal" magnetoresistance (CMR) and the coupled metal-insulator and magnetic transitions displayed at the spin-ordering temperature TC by some of these compounds. The charge localization mechanism above TC appears at present to be the single most important issue in manganite research. Neutron and synchrotron X-ray diffraction studies have revealed, for appropriate doping ranges, a strong competition between the metallic state, which is ferromagnetic and shows small lattice distortions, and a charge-localized/ordered state that becomes antiferromagnetic at low temperatures and shows large lattice distortions of the Jahn-Teller type. In the case of La0.5Ca0.5MnO3 and Pr0.7Ca0.3MnO3, these two states can coexist giving rise to transient inhomogeneities. The possibility that a similar situation may be reproduced in the paramagnetic phase will be discussed, in the light of recent neutron-diffuse-scattering data suggestive of extended ferromagnetic fluctuations above TC. © 1998 Elsevier Science B.V. All rights reserved.

From manganites to cuprates: A comparative study of the local lattice instability

Zeitschrift fur Physik B-Condensed Matter 104:4 (1997) 699-702

Authors:

A Lanzara, NL Saini, M Brunelli, F Natali, A Bianconi, PG Radaelli

Abstract:

Recent studies have shown that structural instabilities play a vital role in segregation of charge carriers in the perovskites. We have used extended x- ray absorption fine structure (EXAFS) to investigate the instability of the CuO6 octahedra of the Lai.85Sr0.i5CuO4 (LSCO) system showing high Tc superconductivity and the MnO6 octhahedra of the Lao.7sCao.25MnO3 (LCMO) system showing GMR (giant-magneto resistance) properties. Temperature dependent Cu K-edge EXAFS spectra on the LSCO and Mn Kedge on the LCMO systems are reported. The results show a similarity in the lattice instability of the two systems providing evidence for a similar phase segregation of localized and itinerant charge carriers in the two families of perovskite systems. © Springer-Verlag 1997.

High pressure synthesis and structure of the superconducting mercury cuprates (Hg1-xMx)Ba2Can-1Cu nO2+2n+∂ with M= C, S

Physica C: Superconductivity and its Applications 282-287:PART 1 (1997) 65-68

Authors:

P Bordet, S Loureiro, S LeFloch, JJ Capponi, C Chaillout, J Chenavas, JL Tholence, EV Antipov, PG Radaelli, M Marezio

Abstract:

In mercury superconducting cuprates synthesized at high pressure, partial carbon substitution on the mercury site occurs when the precursors are not absolutely carbon free. Hg-12(n-1)n samples made from carbonate-containing precursors show lower Tcs and smaller c parameter. A model of the structural arrangement of the CO3-2 groups is proposed from neutron diffraction data and crystal-chemistry considerations. The third oxygen of the oxyanion is situated in the (Hg,C)O∂ layer and hinders the incorporation of extra-oxygen atoms. The (Hg1-xCx)Ba2CuO4+∂ phase diagram shows three different phases, namely HgBa2CuO4+∂, Hg0.5C0.5Ba2CuO4+∂ and CBa2CuO4+∂. The latter two phases are not superconducting due to the insufficient hole concentration on the superconducting layer. Sulphur can also partially replace mercury in Hg1-xSxBa2CuO4+∂ and forms a solid solution up to x=0.15. Neutron diffraction shows that the sulphur atoms arrange as S04-2 oxyanions. The larger S-O distances induce steric limitations to the presence of other sulphate anions in the same mesh.

High-temperature neutron scattering investigation of the β′ phase in the Mg-Zr-O-N system

Journal of Physics and Chemistry of Solids 58:10 (1997) 1557-1568

Authors:

M Lerch, H Boysen, PG Radaelli

Abstract:

The crystal structure and the high temperature behaviour of the β′ phase in the Mg-Zr-O-N system have been investigated by powder neutron diffraction. It crystallizes isostructurally to Zr5Sc2O13 (rhombohedrally distorted fluorite-type structure) and can be described by a stacking of Bevan clusters (A7X12) and A7X14 units along the hexagonal c-axis. In agreement with Pauling's 2nd rule, there are clear indications of N/O ordering with nitrogen occupying mainly the anion position coordinating the central atom of the Bevan cluster. At >960°C, the β′ phase shows a first order transition, basically of an order-disorder type of the anion vacancies, to a fluorite-like structure. Detailed analysis of the Debye-Waller factors and the diffuse scattering show many similarities to cation doped zirconia materials. The local short range order of the high temperature phase is related to the structural features of the β′ structure. From this study, nitrogen containing zirconia seems to be a promising material for a high temperature super-ionic conductor. © 1997 Elsevier Science Ltd.

Neutron Diffraction Study of the Structural and Electronic Properties of Sr2HoMn2O7 and Sr2YMn2O7

Chemistry of Materials 9:12 (1997) 3136-3143

Authors:

PD Battle, JE Millburn, MJ Rosseinsky, LE Spring, JF Vente, PG Radaelli

Abstract:

The crystal structures of Sr2HoMn2O7 and Sr2YMn2O7 have been determined at 290 and 1.7 K from neutron and X-ray powder diffraction data. Both are distorted Ruddlesden-Popper structures formed by the intergrowth of rock-salt-like layers and perovskite-like blocks of tilted MnO6 octahedra (space group P42/mnm; for Ho at 290 Ka = 5.40388(5), c = 19.9050-(2) Å). The majority of the lanthanide cations are located in the rock-salt layers. Neither structure changes significantly on cooling to 1.7 K. There is evidence for neither charge ordering of Mn3+ and Mn4+ cations nor for long-range magnetic ordering. The magnetic susceptibility maximum observed previously is thus confirmed as signifying a transition to a spin-glass phase. The behavior of these compounds is contrasted with that of other Mn oxides which show long-range magnetic order and colossal magnetoresistance.