First Detection of Hydroxyl Radical Emission from an Exoplanet Atmosphere: High-dispersion Characterization of WASP-33b using Subaru/IRD

(2021)

Authors:

Stevanus K Nugroho, Hajime Kawahara, Neale P Gibson, Ernst JW de Mooij, Teruyuki Hirano, Takayuki Kotani, Yui Kawashima, Kento Masuda, Matteo Brogi, Jayne L Birkby, Chris A Watson, Motohide Tamura, Konstanze Zwintz, Hiroki Harakawa, Tomoyuki Kudo, Masayuki Kuzuhara, Klaus Hodapp, Masato Ishizuka, Shane Jacobson, Mihoko Konishi, Takashi Kurokawa, Jun Nishikawa, Masashi Omiya, Takuma Serizawa, Akitoshi Ueda, Sébastien Vievard

First Detection of Hydroxyl Radical Emission from an Exoplanet Atmosphere: High-dispersion Characterization of WASP-33b Using Subaru/IRD *Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

The Astrophysical Journal Letters American Astronomical Society 910:1 (2021) l9

Authors:

Stevanus K Nugroho, Hajime Kawahara, Neale P Gibson, Ernst JW de Mooij, Teruyuki Hirano, Takayuki Kotani, Yui Kawashima, Kento Masuda, Matteo Brogi, Jayne L Birkby, Chris A Watson, Motohide Tamura, Konstanze Zwintz, Hiroki Harakawa, Tomoyuki Kudo, Masayuki Kuzuhara, Klaus Hodapp, Masato Ishizuka, Shane Jacobson, Mihoko Konishi, Takashi Kurokawa, Jun Nishikawa, Masashi Omiya, Takuma Serizawa, Akitoshi Ueda, Sébastien Vievard

Hemispheric tectonics on super-Earth LHS 3844b

Astrophysical Journal Letters IOP Publishing 908:2 (2021) L48

Authors:

Tobias G Meier, Dan J Bower, Tim Lichtenberg, Paul J Tackley, Brice-Olivier Demory

Abstract:

The tectonic regime of rocky planets fundamentally influences their long-term evolution and cycling of volatiles between interior and atmosphere. Earth is the only known planet with active plate tectonics, but observations of exoplanets may deliver insights into the diversity of tectonic regimes beyond the solar system. Observations of the thermal phase curve of super-Earth LHS 3844b reveal a solid surface and lack of a substantial atmosphere, with a temperature contrast between the substellar and antistellar point of around 1000 K. Here, we use these constraints on the planet's surface to constrain the interior dynamics and tectonic regimes of LHS 3844b using numerical models of interior flow. We investigate the style of interior convection by assessing how upwellings and downwellings are organized and how tectonic regimes manifest. We discover three viable convective regimes with a mobile surface: (1) spatially uniform distribution of upwellings and downwellings, (2) prominent downwelling on the dayside and upwellings on the nightside, and (3) prominent downwelling on the nightside and upwellings on the dayside. Hemispheric tectonics is observed for regimes (2) and (3) as a direct consequence of the day-to-night temperature contrast. Such a tectonic mode is absent in the present-day solar system and has never been inferred from astrophysical observations of exoplanets. Our models offer distinct predictions for volcanism and outgassing linked to the tectonic regime, which may explain secondary features in phase curves and allow future observations to constrain the diversity of super-Earth interiors.

On a new formulation for energy transfer between convection and fast tides with application to giant planets and solar type stars

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 503:4 (2021) 5789-5806

Abstract:

All the studies of the interaction between tides and a convective flow assume that the large scale tides can be described as a mean shear flow which is damped by small scale fluctuating convective eddies. The convective Reynolds stress is calculated using mixing length theory, accounting for a sharp suppression of dissipation when the turnover timescale is larger than the tidal period. This yields tidal dissipation rates several orders of magnitude too small to account for the circularization periods of late–type binaries or the tidal dissipation factor of giant planets. Here, we argue that the above description is inconsistent, because fluctuations and mean flow should be identified based on the timescale, not on the spatial scale, on which they vary. Therefore, the standard picture should be reversed, with the fluctuations being the tidal oscillations and the mean shear flow provided by the largest convective eddies. We assume that energy is locally transferred from the tides to the convective flow. Using this assumption, we obtain values for the tidal Q factor of Jupiter and Saturn and for the circularization periods of PMS binaries in good agreement with observations. The timescales obtained with the equilibrium tide approximation are however still 40 times too large to account for the circularization periods of late–type binaries. For these systems, shear in the tachocline or at the base of the convective zone may be the main cause of tidal dissipation.

Vertically resolved magma ocean–protoatmosphere evolution: H2, H2O, CO2, CH4, CO, O2, and N2 as primary absorbers

Journal of Geophysical Research: Planets American Geophysical Union (AGU) (2021)

Authors:

Tim Lichtenberg, Dan J Bower, Mark Hammond, Ryan Boukrouche, Patrick Sanan, Shang‐Min Tsai, Raymond T Pierrehumbert