Mantle mineralogy limits to rocky planet water inventories
Monthly notices of the Royal Astronomical Society 521:2 (2023) 2535-2552
Abstract:
Nominally anhydrous minerals in rocky planet mantles can sequester oceans of water as a whole, giving a constraint on bulk water inventories. Here we predict mantle water capacities from the thermodynamically-limited solubility of water in their constituent minerals. We report the variability of mantle water capacity due to (i) host star refractory element abundances that set mineralogy, (ii) realistic mantle temperature scenarios, and (iii) planet mass. We find that planets large enough to stabilise perovskite almost unfailingly have a dry lower mantle, topped by a high-water-capacity transition zone which may act as a bottleneck for water transport within the planet's interior. Because the pressure of the ringwoodite-perovskite phase boundary defining the lower mantle is roughly insensitive to planet mass, the relative contribution of the upper mantle reservoir will diminish with increasing planet mass. Large rocky planets therefore have disproportionately small mantle water capacities. In practice, our results would represent initial water concentration profiles in planetary mantles where their primordial magma oceans are water-saturated. We suggest that a considerable proportion of massive rocky planets' accreted water budgets would form surface oceans or atmospheric water vapour immediately after magma ocean solidification, possibly diminishing the likelihood of these planets hosting land. This work is a step towards understanding planetary deep water cycling, thermal evolution as mediated by rheology and melting, and the frequency of waterworlds.
Noise induced effects in the axisymmetric spherical Couette flow.
Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 381:2246 (2023) 20220124
Abstract:
We study the axisymmetric, wide gap, spherical Couette flow in the presence of noise in numerical simulations and experiments. Such studies are important because most of the flows in nature are subjected to random fluctuations. Noise is introduced into the flow by adding fluctuations to the inner sphere rotation which are random in time with zero mean. Flows of a viscous incompressible fluid are induced either by rotation of the inner sphere only or by the co-rotation of the spheres. Mean flow generation was found to occur under the action of additive noise. A higher relative amplification of meridional kinetic energy compared to the azimuthal component was also observed under certain conditions. Calculated flow velocities were validated by laser Doppler anemometer measurements. A model is proposed to elucidate the rapid growth of meridional kinetic energy for flows induced by varying the co-rotation of the spheres. Our linear stability analysis for flows induced by the rotation of the inner sphere revealed a decrease in the critical Reynolds number, corresponding to the onset of the first instability. Also, in this case, a local minimum of the mean flow generation on approaching the critical Reynolds number was observed, which is consistent with the available theoretical predictions. This article is part of the theme issue 'Taylor-Couette and related flows on the centennial of Taylor's seminal Philosophical Transactions paper (Part 2)'.The Runaway Greenhouse Effect on Hycean Worlds
(2023)
A mini-chemical scheme with net reactions for 3D general circulation models
Astronomy & Astrophysics EDP Sciences 672 (2023) a110
The Runaway Greenhouse on Sub-Neptune Waterworlds
The Astrophysical Journal American Astronomical Society 944:1 (2023) 20-20