Cloud-convection feedback in brown dwarf atmospheres

Astrophysical Journal American Astronomical Society 929:2 (2022) 153

Authors:

Maxence Lefevre, Xianyu Tan, Elspeth KH Lee, Rt Pierrehumbert

Abstract:

Numerous observational evidence has suggested the presence of active meteorology in the atmospheres of brown dwarfs. A near-infrared brightness variability has been observed. Clouds have a major role in shaping the thermal structure and spectral properties of these atmospheres. The mechanism of such variability is still unclear, and neither 1D nor global circulation models can fully study this topic due to resolution. In this study, a convective-resolving model is coupled to gray-band radiative transfer in order to study the coupling between the convective atmosphere and the variability of clouds over a large temperature range with a domain of several hundred kilometers. Six types of clouds are considered, with microphysics including settling. The clouds are radiatively active through the Rosseland mean coefficient. Radiative cloud feedback can drive spontaneous atmospheric variability in both temperature and cloud structure, as modeled for the first time in three dimensions. Silicate clouds have the most effect on the thermal structure with the generation of a secondary convective layer in some cases, depending on the assumed particle size. Iron and aluminum clouds also have a substantial impact on the atmosphere. Thermal spectra were computed, and we find the strongest effect of the clouds is the smoothing of spectral features at optical wavelengths. Compared to observed L and T dwarfs on the color–magnitude diagram, the simulated atmospheres are redder for most of the cases. Simulations with the presence of cloud holes are closer to observations.

Energy Exchanges in Saturn's Polar Regions From Cassini Observations: Eddy-Zonal Flow Interactions

JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS 127:5 (2022) ARTN e2021JE006973

Authors:

Peter L Read, Arrate Antunano, Simon Cabanes, Greg Colyer, Teresa del Rio Gaztelurrutia, Agustin Sanchez-Lavega

Abstract:

Saturn's polar regions (polewards of ∼63° planetocentric latitude) are strongly dynamically active with zonal jets, polar cyclones and the intriguing north polar hexagon (NPH) wave. Here we analyze measurements of horizontal winds, previously obtained from Cassini images by Antuñano et al. (2015), https://doi.org/10.1002/2014je004709, to determine the spatial and spectral exchanges of kinetic energy (KE) between zonal mean zonal jets and nonaxisymmetric eddies in Saturn's polar regions. Eddies of most resolved scales generally feed KE into the eastward and westward zonal mean jets at rates between 4.3 × 10−5 and 1.4 × 10−4 W kg−1. In particular, the north polar jet (at 76°N) was being energized at a rate of ∼10−4 W kg−1, dominated by the contribution due to the zonal wavenumber m = 6 NPH wave itself. This implies that the hexagon was not being driven at this time through a barotropic instability of the north polar jet, but may suggest a significant role for baroclinic instabilities, convection or other internal energy sources for this feature. The south polar zonal mean jet KE was also being sustained by eddies in that latitude band across a wide range of m. In contrast, results indicate that the north polar vortex may have been weakly barotropically unstable at this time with eddies of low m gaining KE at the expense of the axisymmetric cyclone. However, the southern axisymmetric polar cyclone was gaining KE from non-axisymmetric components at this time, including m = 2 and its harmonics, as the elliptical distortion of the vortex may have been decaying.

Influences of Internal Forcing on Atmospheric Circulations of Irradiated Giant Planets

The Astrophysical Journal American Astronomical Society 928:2 (2022) 166

Authors:

Yuchen Lian, Adam P Showman, Xianyu Tan, Yongyun Hu

Jet Streams and Tracer Mixing in the Atmospheres of Brown Dwarfs and Isolated Young Giant Planets

ArXiv 2203.10523 (2022)

Weak Seasonality on Temperate Exoplanets Around Low-mass Stars

ArXiv 2203.1051 (2022)