Characterization of sites of scientific interest for ESA's PROSPECT instrument
Abstract:
Many upcoming lunar missions and payloads are targeting the south pole of the Moon, due to the volatiles potentially harboured in this region including ESA's PROSPECT instrument. PROSPECT is designed to sample the lunar regolith within the first meter of the surface and to analyse any volatiles found. Remote sensing methods and a range of datasets including thermal models, illumination models, LRO NAC images, LOLA DEMs and LRO NAC DEMs generated with shape-from-shading, were used to identify suitable areas for PROSPECT science within the south polar region (84–90°S). Sites identified were down selected using a science matrix and scoring sites of interest based on if and how well the point of interest met the science requirements of PROSPECT. The highest scoring sites are presented and proposed to be ideal candidate landing sites for missions targeting the lunar south polar region, especially for missions that are interested in sampling volatiles, micro cold traps and Permanently Shaded Regions (PSRs). Understanding and sampling these colder areas within the south polar region will advance the understanding of volatiles within the lunar surface and volatile transfer.Upper limits of HO2 in the atmosphere of Mars from the ExoMars Trace Gas Orbiter
Abstract:
Odd-hydrogen (HOx) species have a crucial role in regulating the chemistry of the atmosphere of Mars and are important to understand some of the most fundamental aspects regarding its atmospheric composition such as the long-term stability of CO2. Despite the key role of these species for our understanding of the Martian photochemistry, there is little observational evidence constraining their abundances. In this study, we use infrared solar occultation observations from the Atmospheric Chemistry Suite aboard the ExoMars Trace Gas Orbiter to search for spectral signatures of HO2 in the atmosphere of Mars. In our analysis of the data, we retrieve vertical profiles of pressure, temperature, and water vapour mixing ratio, but are unable to confidently detect the presence of HO2 features in the spectra. We report upper limits of 15 ppbv (5σ), which represents an order of magnitude improvement with respect to previous investigations. Comparing the derived upper limits with the expectations from 3-dimensional Global Climate Models, we find that approximately an order of magnitude improvement in the instrument sensitivity would be required to detect this molecule and/or constrain the models.HARMONI at ELT: project status and instrument overview
ANDES, the high resolution spectrograph for the ELT: science goals, project overview, and future developments
Observed seasonal changes in Martian hydrogen chloride explained by heterogeneous chemistry
Abstract:
Aims. The aim of this work is to show that the seasonal changes and vertical distribution profiles of hydrogen chloride (HCl) on Mars, as observed by the ExoMars Trace Gas Orbiter, are consistent with the production of gas-phase chlorine atoms from airborne dust and a subsequent rapid uptake of HCl onto water ice particles.
Methods. A 1D photochemistry model was equipped with a chlorine reaction network and driven by dust, water ice, and water vapour profiles measured by the ExoMars Trace Gas Orbiter instrumentation in Mars year 34. The release of Cl and O atoms from airborne dust via the hydration and photolysis of perchlorate within dust grains was parameterised using prior laboratory studies, and the heterogeneous uptake of chlorine species onto dust and water ice was included for processes known to occur in Eartha's atmosphere.
Results. Observed seasonal variations in Martian HCl are reproduced by the model, which yielded low HCl abundances (<1 ppbv) prior to the dust season that rise to 26 ppbv in southern latitudes during the dust season. Structured atmospheric layers that coincide with locations where water ice is absent are also produced. As a consequence of the Cl atoms released via our proposed mechanism, the atmospheric lifetime of methane is shortened by two orders of magnitude. This suggests that the production of Cl induced by the breakdown of hydrated perchlorate via UV radiation (or another electromagnetic radiation) in airborne Martian dust, consistent with observed profiles of HCl, could help reconcile reported variations in methane with photochemical models.