Update to thermal inertia and albedo maps of Enceladus
Copernicus Publications (2025)
Abstract:
We present work to update current maps of the thermal properties of Enceladus using thermal observations from the Cassini Composite InfraRed Spectrometer (CIRS). In 2010, the first maps of Enceladus’ thermal inertia were published that used what CIRS data was available at the time (Howett et al., 2010). These maps were resolved into some latitude zones, and overall conveyed lower thermal inertia and albedo at higher latitudes, and confirmed that like other cold, icy moons of Saturn its surface had low (< 50 MKS) thermal inertia. Improvements to these maps using the totality of the CIRS Focal Plane 1 data (10-600 cm-1 / 16.7-1000 μm) from the mission with updated error estimates will yield better spatial resolution in addition to higher precision estimates of thermal inertia and albedo. This will be particularly useful for improving models of surface temperature or estimating endogenic heat fluxes, like those at Enceladus’ south pole, associated with dissipation of heat from beneath.Acknowledgements: Thanks are given to the NASA Cassini Data Analysis program that funded this work (80NSSC20K0477 and 80NSSC24K0373). Reference:Howett, C.J.A., Spencer, J.R., Pearl, J. and Segura, M., 2010. Thermal inertia and bolometric Bond albedo values for Mimas, Enceladus, Tethys, Dione, Rhea and Iapetus as derived from Cassini/CIRS measurements. Icarus, 206(2), pp.573-593.What goes on inside the Mars north polar vortex?
(2025)
Abstract:
MIRMIS – The Modular Infrared Molecules and Ices Sensor for ESA’s Comet Interceptor.
(2025)
Abstract:
Thermal-IR Observations of (152830) Dinkinesh during the Lucy Mission Flyby
The Planetary Science Journal American Astronomical Society 6:7 (2025) 168
Abstract:
NASA’s Lucy spacecraft flew by the main-belt asteroid (152830) Dinkinesh on 2023 November 1, providing a test of its instruments and systems prior to its encounters with the Jupiter Trojans and enabling an opportunity for scientific investigation of this asteroid. Analysis of disk-integrated radiance spectra of Dinkinesh collected by the Lucy Thermal Emission Spectrometer (L’TES) instrument during the close approach reveals a thermal inertia for Dinkinesh of 91 ± 24 J m−2 K−1 s−1/2 and a surface roughness of 35° ± 7° rms slope. These values for the thermal inertia and surface roughness are comparable to values derived for other small S-type asteroids such as (65803) Didymos. The Dinkinesh flyby also provided the opportunity to develop new techniques for extracting data when the target body does not fill the field of view of the L’TES instrument, which proved challenging for predecessors of this instrument such as OTES on OSIRIS-REx. The grain size of the regolith of Dinkinesh, estimated to be r=1.2−0.6+0.9 mm, is below expected trends with size but is comparable to that of similarly sized asteroids that are either binaries or may have undergone rotational fission in the past. These findings imply that fine-grained materials are being preferentially retained on the primaries of multiple systems, either by cohesive forces or by redeposition after impact events on the secondaries.A 3D model simulation of hydrogen chloride photochemistry on Mars: Comparison with satellite data
Astronomy & Astrophysics EDP Sciences 699 (2025) a362