Thermal properties of Rhea's poles: Evidence for a meter-deep unconsolidated subsurface layer

Icarus Elsevier 272 (2016) 140-148

Authors:

Cja Howett, Jr Spencer, T Hurford, A Verbiscer, M Segura

Abstract:

Cassini's Composite Infrared Spectrometer (CIRS) observed both of Rhea's polar regions during a close (2000 km) flyby on 9th March 2013 during orbit 183. Rhea's southern pole was again observed during a more distant (51,000 km) flyby on 10th February 2015 during orbit 212. The results show Rhea's southern winter pole is one of the coldest places directly observed in our Solar System: surface temperatures of 25.4 ± 7.4 K and 24.7 ± 6.8 K are inferred from orbit 183 and 212 data, respectively. The surface temperature of the northern summer pole inferred from orbit 183 data is warmer: 66.6 ± 0.6 K. Assuming the surface thermophysical properties of the two polar regions are comparable then these temperatures can be considered a summer and winter seasonal temperature constraint for the polar region. Orbit 183 will provide solar longitude (LS) coverage at 133° and 313° for the summer and winter poles respectively, while orbit 212 provides an additional winter temperature constraint at LS 337°. Seasonal models with bolometric albedo values between 0.70 and 0.74 and thermal inertia values between 1 and 46 J m−2 K−1 s−1/2 (otherwise known as MKS units) can provide adequate fits to these temperature constraints (assuming the winter temperature is an upper limit). Both these albedo and thermal inertia values agree within the uncertainties with those previously observed on both Rhea's leading and trailing hemispheres. Investigating the seasonal temperature change of Rhea's surface is particularly important, as the seasonal wave is sensitive to deeper surface temperatures (∼tens of centimeters to meter depths) than the more commonly reported diurnal wave (typically less than a centimeter), the exact depth difference dependent upon the assumed surface properties. For example, if a surface porosity of 0.5 and thermal inertia of 25 MKS is assumed then the depth of the seasonal thermal wave is 76 cm, which is much deeper than the ∼0.5 cm probed by diurnal studies of Rhea (Howett et al., 2010). The low thermal inertia derived here implies that Rhea's polar surfaces are highly porous even at great depths. Analysis of a CIRS focal plane 1 (10–600 cm−1) stare observation, taken during the orbit 183 encounter between 16:22:33 and 16:23:26 UT centered on 71.7°W, 58.7°S provides the first analysis of a thermal emissivity spectrum on Rhea. The results show a flat emissivity spectrum with negligible emissivity features. A few possible explanations exist for this flat emissivity spectrum, but the most likely for Rhea is that the surface is both highly porous and composed of small particles (<∼50 µm).

Pluto's interaction with its space environment: Solar wind, energetic particles, and dust.

Science (New York, N.Y.) 351:6279 (2016) aad9045

Authors:

F Bagenal, M Horányi, DJ McComas, RL McNutt, HA Elliott, ME Hill, LE Brown, PA Delamere, P Kollmann, SM Krimigis, M Kusterer, CM Lisse, DG Mitchell, M Piquette, AR Poppe, DF Strobel, JR Szalay, P Valek, J Vandegriff, S Weidner, EJ Zirnstein, SA Stern, K Ennico, CB Olkin, HA Weaver, LA Young, New Horizons Science Team

Abstract:

The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers(-3) for the dust density in the Pluto system.

Surface compositions across Pluto and Charon.

Science (New York, N.Y.) 351:6279 (2016) aad9189

Authors:

WM Grundy, RP Binzel, BJ Buratti, JC Cook, DP Cruikshank, CM Dalle Ore, AM Earle, K Ennico, CJA Howett, AW Lunsford, CB Olkin, AH Parker, S Philippe, S Protopapa, E Quirico, DC Reuter, B Schmitt, KN Singer, AJ Verbiscer, RA Beyer, MW Buie, AF Cheng, DE Jennings, IR Linscott, J Wm Parker, PM Schenk, JR Spencer, JA Stansberry, SA Stern, HB Throop, CCC Tsang, HA Weaver, GE Weigle, LA Young, New Horizons Science Team

Abstract:

The New Horizons spacecraft mapped colors and infrared spectra across the encounter hemispheres of Pluto and Charon. The volatile methane, carbon monoxide, and nitrogen ices that dominate Pluto's surface have complicated spatial distributions resulting from sublimation, condensation, and glacial flow acting over seasonal and geological time scales. Pluto's water ice "bedrock" was also mapped, with isolated outcrops occurring in a variety of settings. Pluto's surface exhibits complex regional color diversity associated with its distinct provinces. Charon's color pattern is simpler, dominated by neutral low latitudes and a reddish northern polar region. Charon's near-infrared spectra reveal highly localized areas with strong ammonia absorption tied to small craters with relatively fresh-appearing impact ejecta.

The atmosphere of Pluto as observed by New Horizons.

Science (New York, N.Y.) 351:6279 (2016) aad8866

Authors:

G Randall Gladstone, S Alan Stern, Kimberly Ennico, Catherine B Olkin, Harold A Weaver, Leslie A Young, Michael E Summers, Darrell F Strobel, David P Hinson, Joshua A Kammer, Alex H Parker, Andrew J Steffl, Ivan R Linscott, Joel Wm Parker, Andrew F Cheng, David C Slater, Maarten H Versteeg, Thomas K Greathouse, Kurt D Retherford, Henry Throop, Nathaniel J Cunningham, William W Woods, Kelsi N Singer, Constantine CC Tsang, Rebecca Schindhelm, Carey M Lisse, Michael L Wong, Yuk L Yung, Xun Zhu, Werner Curdt, Panayotis Lavvas, Eliot F Young, G Leonard Tyler, New Horizons Science Team

Abstract:

Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Pluto's atmosphere. Whereas the lower atmosphere (at altitudes of less than 200 kilometers) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N2) dominates the atmosphere (at altitudes of less than 1800 kilometers or so), whereas methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) are abundant minor species and likely feed the production of an extensive haze that encompasses Pluto. The cold upper atmosphere shuts off the anticipated enhanced-Jeans, hydrodynamic-like escape of Pluto's atmosphere to space. It is unclear whether the current state of Pluto's atmosphere is representative of its average state--over seasonal or geologic time scales.

The geology of Pluto and Charon through the eyes of New Horizons.

Science (New York, N.Y.) 351:6279 (2016) 1284-1293

Authors:

Jeffrey M Moore, William B McKinnon, John R Spencer, Alan D Howard, Paul M Schenk, Ross A Beyer, Francis Nimmo, Kelsi N Singer, Orkan M Umurhan, Oliver L White, S Alan Stern, Kimberly Ennico, Cathy B Olkin, Harold A Weaver, Leslie A Young, Richard P Binzel, Marc W Buie, Bonnie J Buratti, Andrew F Cheng, Dale P Cruikshank, Will M Grundy, Ivan R Linscott, Harold J Reitsema, Dennis C Reuter, Mark R Showalter, Veronica J Bray, Carrie L Chavez, Carly JA Howett, Tod R Lauer, Carey M Lisse, Alex Harrison Parker, SB Porter, Stuart J Robbins, Kirby Runyon, Ted Stryk, Henry B Throop, Constantine CC Tsang, Anne J Verbiscer, Amanda M Zangari, Andrew L Chaikin, Don E Wilhelms, New Horizons Science Team

Abstract:

NASA's New Horizons spacecraft has revealed the complex geology of Pluto and Charon. Pluto's encounter hemisphere shows ongoing surface geological activity centered on a vast basin containing a thick layer of volatile ices that appears to be involved in convection and advection, with a crater retention age no greater than ~10 million years. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting, the latter likely caused by sublimation erosion and/or collapse. More enigmatic features include tall mounds with central depressions that are conceivably cryovolcanic and ridges with complex bladed textures. Pluto also has ancient cratered terrains up to ~4 billion years old that are extensionally faulted and extensively mantled and perhaps eroded by glacial or other processes. Charon does not appear to be currently active, but experienced major extensional tectonism and resurfacing (probably cryovolcanic) nearly 4 billion years ago. Impact crater populations on Pluto and Charon are not consistent with the steepest impactor size-frequency distributions proposed for the Kuiper belt.