Variable winds on Venus mapped in three dimensions

Geophysical Research Letters 35:13 (2008)

Authors:

A Sánchez-Lavega, R Hueso, G Piccioni, P Drossart, J Peralta, S Pérez-Hoyos, CF Wilson, FW Taylor, KH Baines, D Luz, S Erard, S Lebonnois

Abstract:

We present zonal and meridional wind measurements at three altitude levels within the cloud layers of Venus from cloud tracking using images taken with the VIRTIS instrument on board Venus Express. At low latitudes, zonal winds in the Southern hemisphere are nearly constant with latitude with westward velocities of 105 ms-1 at cloud-tops (altitude ∼ 66 km) and 60-70 ms-1 at the cloud-base (altitude ∼ 47 km). At high latitudes, zonal wind speeds decrease linearly with latitude with no detectable vertical wind shear (values lower than 15 ms-1), indicating the possibility of a vertically coherent vortex structure. Meridional winds at the cloud-tops are poleward with peak speed of 10 ms-1 at 55° S but below the cloud tops and averaged over the South hemisphere are found to be smaller than 5 ms-1. We also, report the detection at subpolar latitudes of wind variability due to the solar tide. Copyright 2008 by the American Geophysical Union.

Semi-annual oscillations in Saturn's low-latitude stratospheric temperatures.

Nature 453:7192 (2008) 196-199

Authors:

Glenn S Orton, Padma A Yanamandra-Fisher, Brendan M Fisher, A James Friedson, Paul D Parrish, Jesse F Nelson, Amber Swenson Bauermeister, Leigh Fletcher, Daniel Y Gezari, Frank Varosi, Alan T Tokunaga, John Caldwell, Kevin H Baines, Joseph L Hora, Michael E Ressler, Takuya Fujiyoshi, Tetsuharu Fuse, Hagop Hagopian, Terry Z Martin, Jay T Bergstralh, Carly Howett, William F Hoffmann, Lynne K Deutsch, Jeffrey E Van Cleve, Eldar Noe, Joseph D Adams, Marc Kassis, Eric Tollestrup

Abstract:

Observations of oscillations of temperature and wind in planetary atmospheres provide a means of generalizing models for atmospheric dynamics in a diverse set of planets in the Solar System and elsewhere. An equatorial oscillation similar to one in the Earth's atmosphere has been discovered in Jupiter. Here we report the existence of similar oscillations in Saturn's atmosphere, from an analysis of over two decades of spatially resolved observations of its 7.8-microm methane and 12.2-microm ethane stratospheric emissions, where we compare zonal-mean stratospheric brightness temperatures at planetographic latitudes of 3.6 degrees and 15.5 degrees in both the northern and the southern hemispheres. These results support the interpretation of vertical and meridional variability of temperatures in Saturn's stratosphere as a manifestation of a wave phenomenon similar to that on the Earth and in Jupiter. The period of this oscillation is 14.8 +/- 1.2 terrestrial years, roughly half of Saturn's year, suggesting the influence of seasonal forcing, as is the case with the Earth's semi-annual oscillation.

The NEMESIS planetary atmosphere radiative transfer and retrieval tool

Journal of Quantitative Spectroscopy and Radiative Transfer 109:6 (2008) 1136-1150

Authors:

PGJ Irwin, NA Teanby, R de Kok, LN Fletcher, CJA Howett, CCC Tsang, CF Wilson, SB Calcutt, CA Nixon, PD Parrish

Abstract:

With the exception of in situ atmospheric probes, the most useful way to study the atmospheres of other planets is to observe their electromagnetic spectra through remote observations, either from ground-based telescopes or from spacecraft. Atmospheric properties most consistent with these observed spectra are then derived with retrieval models. All retrieval models attempt to extract the maximum amount of atmospheric information from finite sets of data, but while the problem to be solved is fundamentally the same for any planetary atmosphere, until now all such models have been assembled ad hoc to address data from individual missions. In this paper, we describe a new general-purpose retrieval model, Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS), which was originally developed to interpret observations of Saturn and Titan from the composite infrared spectrometer on board the NASA Cassini spacecraft. NEMESIS has been constructed to be generally applicable to any planetary atmosphere and can be applied from the visible/near-infrared right out to microwave wavelengths, modelling both reflected sunlight and thermal emission in either scattering or non-scattering conditions. NEMESIS has now been successfully applied to the analysis of data from many planetary missions and also ground-based observations. © 2007 Elsevier Ltd. All rights reserved.

The NEMESIS planetary atmosphere radiative transfer and retrieval tool

Journal of Quantitative Spectroscopy and Radiative Transfer Elsevier 109:6 (2008) 1136-1150

Authors:

PGJ Irwin, NA Teanby, R de Kok, LN Fletcher, CJA Howett, CCC Tsang, CF Wilson, SB Calcutt, CA Nixon, PD Parrish

Global and temporal variations in hydrocarbons and nitriles in Titan's stratosphere for northern winter observed by Cassini/CIRS

Icarus 193:2 (2008) 595-611

Authors:

NA Teanby, PGJ Irwin, R de Kok, CA Nixon, A Coustenis, E Royer, SB Calcutt, NE Bowles, L Fletcher, C Howett, FW Taylor

Abstract:

Mid-infrared spectra measured by Cassini's Composite InfraRed Spectrometer (CIRS) between July 2004 and January 2007 (Ls = 293 ° - 328 °) have been used to determine stratospheric temperature and abundances of C2H2, C3H4, C4H2, HCN, and HC3N. Over 65,000 nadir spectra with spectral resolutions of 0.5 and 2.5 cm-1 were used to probe spatial and temporal composition variations in Titan's stratosphere. Cassini's 180° orbital transfer in mid-2006 allowed low emission angle observations of the north polar region for the first time in the mission and allowed us to probe the full latitude range. We present the first measurements of composition variations within the polar vortex, which display increasing abundances right up to 90° N. The lack of a homogeneous abundance-latitude variation within the vortex indicates limited horizontal mixing and suggests that subsidence is greatest at the vortex core. Contrary to numerical model predictions and tropospheric cloud observations, we do not see any evidence for a secondary circulation cell near the south pole, which suggests a single Hadley-type circulation in the stratosphere at this epoch. This difference can be reconciled if the secondary cell is restricted to altitudes below 100 km, where there is no sensitivity in our data. Temporal variations in composition were observed in the south, with volatile species becoming less abundant as the season progressed. The observed variations are compared to numerical model predictions and observations from Voyager. © 2007 Elsevier Inc. All rights reserved.