Limits on the effective quark radius from inclusive ep scattering at HERA

Physics Letters B Elsevier 757 (2016) 468-472

Authors:

Brian Foster, AM Cooper-Sarkar, RCE Devenish, C Gwenlan

Abstract:

The high-precision HERA data allows searches up to TeV scales for beyond the Standard Model contributions to electron–quark scattering. Combined measurements of the inclusive deep inelastic cross sections in neutral and charged current ep scattering corresponding to a luminosity of around 1 fb−1 have been used in this analysis. A new approach to the beyond the Standard Model analysis of the inclusive ep data is presented; simultaneous fits of parton distribution functions together with contributions of “new physics” processes were performed. Results are presented considering a finite radius of quarks within the quark form-factor model. The resulting 95% C.L. upper limit on the effective quark radius is 0.43⋅10−16 cm.

Characterisation of the PXIE Allison-type emittance scanner

Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment Elsevier 815 (2016) 7-17

Authors:

R D׳Arcy, M Alvarez, J Gaynier, L Prost, V Scarpine, A Shemyakin

Electron bunch profile reconstruction based on phase-constrained iterative algorithm

Physical Review Accelerators and Beams American Physical Society 19:3 (2016)

Authors:

F Bakkali Taheri, Ivan Konoplev, G Doucas, P Baddoo, R Bartolini, J Cowley, SM Hooker

Abstract:

The phase retrieval problem occurs in a number of areas in physics and is the subject of continuing investigation. The one-dimensional case, e.g., the reconstruction of the temporal profile of a charged particle bunch, is particularly challenging and important for particle accelerators. Accurate knowledge of the longitudinal (time) profile of the bunch is important in the context of linear colliders, wakefield accelerators and for the next generation of light sources, including x-ray SASE FELs. Frequently applied methods, e.g., minimal phase retrieval or other iterative algorithms, are reliable if the Blaschke phase contribution is negligible. This, however, is neither known a priori nor can it be assumed to apply to an arbitrary bunch profile. We present a novel approach which gives reproducible, most-probable and stable reconstructions for bunch profiles (both artificial and experimental) that would otherwise remain unresolved by the existing techniques.

Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Elsevier 829 (2016) 383-385

Authors:

Robert Shalloo, L Corner, C Arran, J Cowley, G Cheung, C Thornton, R Walczak, SM Hooker

Abstract:

In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150–170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

Particle physics after the Higgs

Annalen der Physik Wiley 528:1-2 (2016) 16-19

Authors:

H Abramowicz, A Caldwell, Brian Foster