An upper observable black hole mass scale for tidal destruction events with thermal X-ray spectra
Monthly Notices of the Royal Astronomical Society Oxford University Press 505:2 (2021) 1629-1644
Abstract:
We comprehensively model the X-ray luminosity emergent from time-dependent relativistic accretion discs, developing analytical models of the X-ray luminosity of thermal disc systems as a function of black hole mass M, disc mass Md, and disc α-parameter. The X-ray properties of these solutions will be directly relevant for understanding tidal disruption event (TDE) observations. We demonstrate an extremely strong suppression of thermal X-ray luminosity from large mass black holes, LX ∼ exp (− m7/6), where m is a dimensionless mass, roughly the black hole mass in unity of 106M⊙. This strong suppression results in upper observable black hole mass limits, which we demonstrate to be of order Mlim ≃ 3 × 107M⊙, above which thermal X-ray emission will not be observable. This upper observable black hole mass limit is a function of the remaining disc parameters, and the full dependence can be described analytically (equation 82). We demonstrate that the current population of observed X-ray TDEs is indeed consistent with an upper black hole mass limit of order M ∼ 107M⊙, consistent with our analysis.The high energy Universe at ultra-high resolution: the power and promise of X-ray interferometry
Experimental Astronomy Springer 51 (2021) 1081-1107
Abstract:
We propose the development of X-ray interferometry (XRI), to reveal the Universe at high energies with ultra-high spatial resolution. With baselines which can be accommodated on a single spacecraft, XRI can reach 100 μ as resolution at 10 Å (1.2 keV) and 20 μ as at 2 Å (6 keV), enabling imaging and imaging-spectroscopy of (for example) X-ray coronae of nearby accreting supermassive black holes (SMBH) and the SMBH ‘shadow’; SMBH accretion flows and outflows; X-ray binary winds and orbits; stellar coronae within ∼ 100 pc and many exoplanets which transit across them. For sufficiently luminous sources XRI will resolve sub-pc scales across the entire observable Universe, revealing accreting binary SMBHs and enabling trigonometric measurements of the Hubble constant with X-ray light echoes from quasars or explosive transients. A multi-spacecraft ‘constellation’ interferometer would resolve well below 1 μ as, enabling SMBH event horizons to be resolved in many active galaxies and the detailed study of the effects of strong field gravity on the dynamics and emission from accreting gas close to the black hole.The hybrid radio/X-ray correlation of the black hole transient MAXI J1348-630
(2021)
Search for dark matter annihilation in the dwarf irregular galaxy WLM with H.E.S.S
(2021)
SRG/ART-XC and NuSTAR Observations of the X-Ray pulsar GRO J1008–57 in the Lowest Luminosity State
The Astrophysical Journal American Astronomical Society 912:1 (2021) 17