The Radio Flare and Multiwavelength Afterglow of the Short GRB 231117A: Energy Injection from a Violent Shell Collision

The Astrophysical Journal American Astronomical Society 994:1 (2025) 5-5

Authors:

GE Anderson, GP Lamb, BP Gompertz, L Rhodes, A Martin-Carrillo, AJ van der Horst, A Rowlinson, ME Bell, T-W Chen, HM Fausey, M Ferro, PJ Hancock, SR Oates, S Schulze, RLC Starling, S Yang, K Ackley, JP Anderson, A Andersson, JF Agüí Fernández, R Brivio, E Burns, KC Chambers, T de Boer, V D’Elia, M De Pasquale, A de Ugarte Postigo, Dimple, R Fender, MD Fulton, H Gao, JH Gillanders, DA Green, M Gromadzki, A Gulati, DH Hartmann, ME Huber, NJ Klingler, NPM Kuin, JK Leung, AJ Levan, C-C Lin, E Magnier, DB Malesani, P Minguez, KP Mooley, T Mukherjee, M Nicholl, PT O’Brien, G Pugliese, A Rossi, SD Ryder, B Sbarufatti, B Schneider, F Schüssler, SJ Smartt, KW Smith, S Srivastav, D Steeghs, NR Tanvir, CC Thoene, SD Vergani, RJ Wainscoat, Z-N Wang, RAMJ Wijers, D Williams-Baldwin, I Worssam, T Zafar

Abstract:

Abstract We present the early radio detection and multiwavelength modeling of the short gamma-ray burst (GRB) 231117A at redshift z = 0.257. The Australia Telescope Compact Array automatically triggered a 9 hr observation of GRB 231117A at 5.5 and 9 GHz following its detection by the Neil Gehrels Swift Observatory just 1.3 hr post-burst. Splitting this observation into 1 hr time bins, the early radio afterglow exhibited flaring, scintillating and plateau phases. The scintillation allowed us to place the earliest upper limit (<10 hr) on the size of a GRB blast wave to date, constraining it to <1 × 10 16 cm. Multiwavelength modeling of the full afterglow required a period of significant energy injection between ∼0.02 and 1 day. The energy injection was modeled as a violent collision of two shells: a reverse shock passing through the injection shell explains the early radio plateau, while an X-ray flare is consistent with a shock passing through the leading impulsive shell. Beyond 1 day, the blast wave evolves as a classic decelerating forward shock with an electron distribution index of p  = 1.66 ± 0.01. Our model also indicates a jet break at ∼2 days, and a half-opening angle of θ j = 16 . ° 6 ± 1 . ° 1 . Following the period of injection, the total energy is ζ  ∼ 18 times the initial impulsive energy, with a final collimation-corrected energy of E Kf  ∼ 5.7 × 10 49 erg. The minimum Lorentz factors this model requires are consistent with constraints from the early radio measurements of Γ > 35 to Γ > 5 between ∼0.1 and 1 day. These results demonstrate the importance of rapid and sensitive radio follow-up of GRBs for exploring their central engines and outflow behaviour.

A probe of the maximum energetics of fast radio bursts through a prolific repeating source

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1937

Authors:

OS Ould-Boukattine, P Chawla, JWT Hessels, AJ Cooper, MP Gawroński, W Herrmann, DM Hewitt, J Huang, D Huppenkothen, F Kirsten, DC Konijn, K Nimmo, Z Pleunis, W Puchalska, MP Snelders

Abstract:

Abstract Fast radio bursts (FRBs) are sufficiently energetic to be detectable from luminosity distances up to at least seven billion parsecs (redshift z &gt; 1). Probing the maximum energies and luminosities of FRBs constrains their emission mechanism and cosmological population. Here we investigate the maximum energetics of a highly active repeater, FRB 20220912A, using 1,500 h of observations. We detect 130 high-energy bursts and find a break in the burst energy distribution, with a flattening of the power-law slope at higher energy – consistent with the behaviour of another highly active repeater, FRB 20201124A. There is a roughly equal split of integrated burst energy between the low- and high-energy regimes. Furthermore, we model the rate of the highest-energy bursts and find a turnover at a characteristic spectral energy density of $E^{\textrm {char}}_{\nu } = 2.09^{+3.78}_{-1.04}\times 10^{32}$ erg Hz−1. This characteristic maximum energy agrees well with observations of apparently one-off FRBs, suggesting a common physical mechanism for their emission. The extreme burst energies push radiation and source models to their limit: at this burst rate a typical magnetar (B = 1015 G) would deplete the energy stored in its magnetosphere in ∼ 2150 h, assuming a radio efficiency εradio = 10−5. We find that the high-energy bursts (Eν &gt; 3 × 1030 erg Hz−1) play an important role in exhausting the energy budget of the source.

Black hole merger rates in AGN: contribution from gas-captured binaries

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1896

Authors:

Connar Rowan, Henry Whitehead, Bence Kocsis

Abstract:

Abstract Merging black hole (BH) binaries in AGN discs formed through two-body scatterings via the “gas-capture” process may explain a significant fraction of BH mergers in AGN and a non-negligible contribution to the observed rate from LIGO-VIRGO-KAGRA. We perform Monte Carlo simulations of binary BH formation, evolution and mergers across the observed AGN mass function using a novel physically motivated treatment for the gas-capture process derived from hydrodynamical simulations of BH-BH encounters in AGN. Our models suggest that gas-captured binaries could result in merger rates of 0.73 − 7.1Gpc−3yr−1. Mergers from AGN are dominated by AGN with supermassive BH masses of ∼107M⊙, with 90 % of mergers occurring in the range ∼106M⊙ − 108M⊙. The merging mass distribution is flatter than the initial BH mass power law by a factor Δξ = 1.1 − 1.2, as larger BHs align with the disc and form binaries more efficiently. Similarly, the merging mass ratio distribution is flatter, therefore the AGN channel could explain high mass and unequal mass ratio detections such as GW190521 and GW190814. Using a simpler dynamical friction treatment for the binary formation process, the results are similar, where the primary bottleneck is the alignment time with the disc. The most influential parameters are the anticipated number of BHs and their mass function. Given the many uncertainties that remain in the AGN channel, we expect the true uncertainty extends beyond our predicted rates. Nonetheless, we conclude that AGN remain an important channel for consideration, particularly for gravitational wave detections involving one or two high mass BHs.

Search for the Optical Counterpart of Einstein Probe–discovered Fast X-Ray Transients from the Lulin Observatory

The Astrophysical Journal Supplement Series American Astronomical Society 281:1 (2025) 20-20

Authors:

Amar Aryan, Ting-Wan Chen, Sheng Yang, James H Gillanders, Albert KH Kong, SJ Smartt, Heloise F Stevance, Yi-Jung Yang, Aysha Aamer, Rahul Gupta, Lele Fan, Wei-Jie Hou, Hsiang-Yao Hsiao, Amit Kumar, Cheng-Han Lai, Meng-Han Lee, Yu-Hsing Lee, Hung-Chin Lin, Chi-Sheng Lin, Chow-Choong Ngeow, Matt Nicholl, Yen-Chen Pan, Shashi Bhushan Pandey, Aiswarya Sankar.K, Shubham Srivastav, Guanghui Sun, Ze-Ning Wang

Abstract:

Abstract The launch of the Einstein probe (EP) mission has revolutionized the detection and follow-up observations of fast X-ray transients (FXTs) by providing prompt and timely access to their precise localizations. In the first year of its operation, the EP mission reported the discovery of 72 high signal-to-noise FXTs. Subjected to the visibility in the sky and weather conditions, we search for the optical counterparts of 42 EP-discovered FXTs from the Lulin Observatory. We successfully detected the optical counterparts of 12 FXTs, and five of those were first discovered by us from the Lulin Observatory. We find that the optical counterparts are generally faint ( r  > 20 mag) and decline rapidly (>0.5 mag day −1 ). We also find that 12 out of 42 FXTs show direct evidence of their association with gamma-ray bursts (GRBs) through significant temporal and spatial overlapping. Furthermore, the luminosities and redshifts of FXTs with confirmed optical counterparts in our observations are fully consistent with the faintest end of the GRB population. However, the nondetection of any associated optical counterpart with a significant fraction of FXTs suggests that EP FXTs are likely a subset of the so-called “dark FXTs,” similar to “dark GRBs.” Additionally, the luminosities of two FXTs with confirmed redshifts are also consistent with jetted tidal disruption events (TDEs). However, we find that the optical luminosities of FXTs differ significantly from typical supernova shock breakout or kilonova emissions. Thus, we conclude that a significant fraction of EP-discovered FXTs are associated with events having relativistic jets; either a GRB or a jetted TDE.

Physics of strong magnetism with eXTP

Science China Physics, Mechanics & Astronomy Springer Nature 68:11 (2025) 119505

Authors:

Mingyu Ge, Long Ji, Roberto Taverna, Sergey Tsygankov, Yanjun Xu, Andrea Santangelo, Silvia Zane, Shuang-Nan Zhang, Hua Feng, Wei Chen, Quan Cheng, Xian Hou, Matteo Imbrogno, Gian Luca Israel, Ruth Kelly, Ling-Da Kong, Kuan Liu, Alexander Mushtukov, Juri Poutanen, Valery Suleimanov, Lian Tao, Hao Tong, Roberto Turolla, Weihua Wang, Wentao Ye, Qing-Chang Zhao, Nabil Brice, Jinjun Geng, Lin Lin, Wei-Yang Wang, Fei Xie, Shao-Lin Xiong, Shu Zhang, Yucong Fu, Dong Lai, Jian Li, Pan-Ping Li, Xiaobo Li, Xinyu Li, Honghui Liu, Jiren Liu, Jingqiang Peng, Qingcang Shui, Youli Tuo, Hongguang Wang, Wei Wang, Shanshan Weng, Yuan You, Xiaoping Zheng, Xia Zhou

Abstract:

In this paper we present the science potential of the enhanced X-ray Timing and Polarimetry (eXTP) mission, in its new configuration, for studies of strongly magnetized compact objects. We discuss the scientific potential of eXTP for quantum electrodynamic (QED) studies, especially leveraging the recent observations made with the NASA IXPE mission. Given eXTP’s unique combination of timing, spectroscopy, and polarimetry, we focus on the perspectives for physics and astrophysics studies of strongly magnetized compact objects, such as magnetars and accreting X-ray pulsars. Developed by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is expected to launch in early 2030.