Kinematics show consistency between stellar mass and supermassive black hole parent population jet speeds
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf2102
Abstract:
Abstract Jets from stellar-mass and supermassive black holes provide the unique opportunity to study similar processes in two very different mass regimes. Historically, the apparent speeds of black hole x-ray binary (BHXRBs) jets have been observed to be lower than jet speeds from active galactic nuclei (AGN) and specifically blazars. In this work, we show that selection effects could be the primary cause of the observed population differences. For the first time, it is possible to perform a statistical analysis of the underlying BHXRB jet Lorentz factor distribution. We use both the Anderson-Darling test and apply nested sampling to this problem. With Bayes factors, we confirm that the Lorentz factor distribution of BHXRBs is best described with a power law, the same model that has been applied to AGN jets. For a Lorentz factor distribution following $\rm N(\Gamma ) \propto \Gamma ^b$ we find a value for the exponent of $b=-2.64_{-0.55}^{+0.46}$. This exponent is consistent with values found in AGN population studies, within 1σ for Swift-BAT and Fermi-LAT selected AGN. The best-fit exponent for the radio selected MOJAVE sample is just above our 2σ limit. This is a remarkable agreement given the different scales at which the jets are observed. The observed slower apparent speeds in BHXRBs are largely due to the much larger inclinations in this sample. Furthermore, nested sampling confirms that Γmax is completely unconstrained using this method. Therefore, based on kinematics alone, BHXRB jets are broadly consistent with being just as relativistic as those from supermassive black holes.The Radio Flare and Multiwavelength Afterglow of the Short GRB 231117A: Energy Injection from a Violent Shell Collision
The Astrophysical Journal American Astronomical Society 994:1 (2025) 5-5
Abstract:
The Radio Flare and Multiwavelength Afterglow of the Short GRB 231117A: Energy Injection from a Violent Shell Collision
The Astrophysical Journal American Astronomical Society 994:1 (2025) 5
Abstract:
We present the early radio detection and multiwavelength modeling of the short gamma-ray burst (GRB) 231117A at redshift z = 0.257. The Australia Telescope Compact Array automatically triggered a 9 hr observation of GRB 231117A at 5.5 and 9 GHz following its detection by the Neil Gehrels Swift Observatory just 1.3 hr post-burst. Splitting this observation into 1 hr time bins, the early radio afterglow exhibited flaring, scintillating and plateau phases. The scintillation allowed us to place the earliest upper limit (<10 hr) on the size of a GRB blast wave to date, constraining it to <1 × 1016 cm. Multiwavelength modeling of the full afterglow required a period of significant energy injection between ∼0.02 and 1 day. The energy injection was modeled as a violent collision of two shells: a reverse shock passing through the injection shell explains the early radio plateau, while an X-ray flare is consistent with a shock passing through the leading impulsive shell. Beyond 1 day, the blast wave evolves as a classic decelerating forward shock with an electron distribution index of p = 1.66 ± 0.01. Our model also indicates a jet break at ∼2 days, and a half-opening angle of θj=16.°6±1.°1 . Following the period of injection, the total energy is ζ ∼ 18 times the initial impulsive energy, with a final collimation-corrected energy of EKf ∼ 5.7 × 1049 erg. The minimum Lorentz factors this model requires are consistent with constraints from the early radio measurements of Γ > 35 to Γ > 5 between ∼0.1 and 1 day. These results demonstrate the importance of rapid and sensitive radio follow-up of GRBs for exploring their central engines and outflow behaviour.A probe of the maximum energetics of fast radio bursts through a prolific repeating source
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1937
Abstract:
Abstract Fast radio bursts (FRBs) are sufficiently energetic to be detectable from luminosity distances up to at least seven billion parsecs (redshift z > 1). Probing the maximum energies and luminosities of FRBs constrains their emission mechanism and cosmological population. Here we investigate the maximum energetics of a highly active repeater, FRB 20220912A, using 1,500 h of observations. We detect 130 high-energy bursts and find a break in the burst energy distribution, with a flattening of the power-law slope at higher energy – consistent with the behaviour of another highly active repeater, FRB 20201124A. There is a roughly equal split of integrated burst energy between the low- and high-energy regimes. Furthermore, we model the rate of the highest-energy bursts and find a turnover at a characteristic spectral energy density of $E^{\textrm {char}}_{\nu } = 2.09^{+3.78}_{-1.04}\times 10^{32}$ erg Hz−1. This characteristic maximum energy agrees well with observations of apparently one-off FRBs, suggesting a common physical mechanism for their emission. The extreme burst energies push radiation and source models to their limit: at this burst rate a typical magnetar (B = 1015 G) would deplete the energy stored in its magnetosphere in ∼ 2150 h, assuming a radio efficiency εradio = 10−5. We find that the high-energy bursts (Eν > 3 × 1030 erg Hz−1) play an important role in exhausting the energy budget of the source.Black hole merger rates in AGN: contribution from gas-captured binaries
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1896