The connection between the fastest astrophysical jets and the spin axis of their black hole

Nature Astronomy Springer Science and Business Media LLC (2025)

Authors:

RP Fender, SE Motta

Abstract:

Abstract Astrophysical jets signpost the most extreme phenomena in the Universe. Despite a century of study, connections between the physics of black holes and the processes underpinning the formation and launch of these jets remain elusive. Here we present a statistically significant sample of transient jet speeds from stellar-mass black holes and neutron stars. The fastest jets are exclusively from black holes and propagate along a fixed axis across several ejection phases. This provides strong evidence that the most relativistic jets propagate along the spin axis of the black hole that launches them. However, we find no correlation between reported spin estimates and the jet speeds, indicating that some issues remain in connecting the theories of jet formation with spin measurements. By contrast, slower jets can be launched by both black holes and neutron stars and can change in direction or precess, indicating that they are launched from the accretion flow.

Getting More Out of Black Hole Superradiance: a Statistically Rigorous Approach to Ultralight Boson Constraints from Black Hole Spin Measurements

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1564

Authors:

Sebastian Hoof, David JE Marsh, Júlia Sisk-Reynés, James H Matthews, Christopher Reynolds

Abstract:

Abstract Black hole (BH) superradiance can provide strong constraints on the properties of ultralight bosons (ULBs). While most of the previous work has focused on the theoretical predictions, here we investigate the most suitable statistical framework to constrain ULB masses and self-interactions using BH spin measurements. We argue that a Bayesian approach based on a simple timescales analysis provides a clear statistical interpretation, deals with limitations regarding the reproducibility of existing BH analyses, incorporates the full information from BH data, and allows us to include additional nuisance parameters or to perform hierarchical modelling with BH populations in the future. We demonstrate the feasibility of our approach using mass and spin posterior samples for the X-ray binary BH M33 X-7 and, for the first time in this context, the supermassive BH IRAS 09149-6206. We explain the differences to existing ULB constraints in the literature and illustrate the effects of various assumptions about the superradiance process (equilibrium regime vs cloud collapse, higher occupation levels). As a result, our procedure yields the most statistically rigorous ULB constraints available in the literature, with important implications for the QCD axion and axion-like particles. We encourage all groups analysing BH data to publish likelihood functions or posterior samples as supplementary material to facilitate this type of analysis, and for theory developments to compress their findings to effective timescale modifications. https://github.com/sebhoof/bhsr

Relativistic precessing jets powered by an accreting neutron star

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press (OUP) 544:1 (2025) L37-L44

Authors:

FJ Cowie, RP Fender, I Heywood, AK Hughes, K Savard, PA Woudt, F Carotenuto, AJ Cooper, J van den Eijnden, KVS Gasealahwe, SE Motta, P Saikia

Abstract:

ABSTRACT Precessing relativistic jets launched by compact objects are rarely directly measured, and present an invaluable opportunity to better understand many features of astrophysical jets. In this Letter we present MeerKAT radio observations of the neutron star X-ray binary system (NSXB) Circinus X-1 (Cir X-1). We observe a curved S-shaped morphology on $\sim 20\, \rm arcsec\, (\sim 1\:\text{pc})$ scales in the radio emission around Cir X-1. We identify flux density and position changes in the S-shaped emission on year time-scales, robustly showing its association with relativistic jets. The jets of Cir X-1 are still propagating with mildly relativistic velocities $\sim 1\:\text{pc}$ from the core, the first time such large scale jets have been seen from a NSXB. The position angle of the jet axis is observed to vary on year time-scales, over an extreme range of at least $110^\circ$. The morphology and position angle changes of the jet are best explained by a smoothly changing launch direction, verifying suggestions from previous literature, and indicating that precession of the jets is occurring. Steady precession of the jet is one interpretation of the data, and if occurring, we constrain the precession period and half-opening angle to $>10$ yr and $>33^\circ$, respectively, indicating precession in a different parameter space to similar known objects such as SS 433.

The ATLAS Virtual Research Assistant

The Astrophysical Journal American Astronomical Society 990:2 (2025) 201

Authors:

HF Stevance, KW Smith, SJ Smartt, SJ Roberts, N Erasmus, DR Young, A Clocchiatti

Abstract:

We present the Virtual Research Assistant (VRA) of the ATLAS sky survey, which performs preliminary eyeballing on our clean transient data stream. The VRA uses histogram-based gradient-boosted decision tree classifiers trained on real data to score incoming alerts on two axes: “Real” and “Galactic.” The alerts are then ranked using a geometric distance such that the most “real” and “extragalactic” receive high scores; the scores are updated when new lightcurve data is obtained on subsequent visits. To assess the quality of the training we use the recall at rank K, which is more informative to our science goal than general metrics (e.g., accuracy, F1-scores). We also establish benchmarks for our metric based on the pre-VRA eyeballing strategy, to ensure our models provide notable improvements before being added to the ATLAS pipeline. Then, policies are defined on the ranked list to select the most promising alerts for humans to eyeball and to automatically remove bogus alerts. In production the VRA method has resulted in a reduction in eyeballing workload by 85% with a loss of follow-up opportunity <0.08%. It also allows us to automatically trigger follow-up observations with the Lesedi telescope, paving the way toward automated methods that will be required in the era of LSST. Finally, this is a demonstration that feature-based methods remain extremely relevant in our field, being trainable on only a few thousand samples and highly interpretable; they also offer a direct way to inject expertise into models through feature engineering.

Evidence for inverse Compton scattering in high-redshift Lyman-break galaxies

Monthly Notices of the Royal Astronomical Society (2025) staf1505

Authors:

IH Whittam, MJ Jarvis, Eric J Murphy, NJ Adams, RAA Bowler, A Matthews, RG Varadaraj, CL Hale, I Heywood, K Knowles, L Marchetti, N Seymour, F Tabatabaei, AR Taylor, M Vaccari, A Verma

Abstract:

Radio continuum emission provides a unique opportunity to study star-formation unbiased by dust obscuration. However, if radio observations are to be used to accurately trace star-formation to high redshifts, it is crucial that the physical processes which affect the radio emission from star-forming galaxies are well understood. While inverse Compton (IC) losses from the cosmic microwave background (CMB) are negligible in the local universe, the rapid increase in the strength of the CMB energy density with redshift [∼(1 + z)4] means that this effect becomes increasingly important at z ≳ 3. Using a sample of ∼200, 000 high-redshift (3 < z < 5) Lyman-break galaxies selected in the rest-frame ultraviolet (UV), we have stacked radio observations from the MIGHTEE survey to estimate their 1.4-GHz flux densities. We find that for a given rest-frame UV magnitude, the 1.4-GHz flux density and luminosity decrease with redshift. We compare these results to the theoretical predicted effect of energy losses due to inverse Compton scattering off the CMB, and find that the observed decrease is consistent with this explanation. We discuss other possible causes for the observed decrease in radio flux density with redshift at a given UV magnitude, such as a top-heavy initial mass function at high redshift or an evolution of the dust properties, but suggest that inverse Compton scattering is the most compelling explanation.