Normal or transitional? The evolution and properties of two type Ia supernovae in the Virgo cluster

Astronomy & Astrophysics EDP Sciences (2025)

Authors:

L Izzo, C Gall, N Khetan, N Earl, J Hjorth, WB Hoogendam, YQ Ni, A Sedgewick, SM Ward, Y Zenati, K Auchettl, S Bhattacharjee, S Benetti, M Branchesi, E Cappellaro, A Catapano, KC Chambers, DA Coulter, KW Davis, M Della Valle, S Dhawan, T de Boer, G Dimitriadis, RJ Foley, M Fulton, H Gao, WJ Hon, MEDO Huber Jones, CD Kilpatrick, C Lin, TB Lowe, EA Magnier, KS Mandel, R Margutti, GP Narayan Ochner, YC Pan, A Reguitti, C Rojas-Bravo, M Siebert, SJ Smartt, KW Smith, S Srivastav, J Swift, K Taggart, G Terreran, S Thorp, L Tomasella, RJ Wainscoat

Abstract:

Type Ia supernovae (SNe Ia) are among the most precise cosmological distance indicators used to study the expansion history of the Universe. The vast increase in SN Ia data due to large-scale astrophysical surveys has led to the discovery of a wide variety of SN Ia sub-classes, such as transitional and fast-declining SNe Ia. However, their distinct photometric and spectroscopic properties differentiate them from the population of normal SNe Ia such that their use as cosmological tools remains challenged. Here, we present a high-cadenced photometric and spectroscopic dataset of two SNe Ia, SNe 2020ue and 2020nlb, which were discovered in the nearby Virgo cluster of galaxies. Our study shows that SN 2020nlb is a normal SN Ia whose unusually red colour is intrinsic, arising from a lower photospheric temperature rather than interstellar reddening, providing clear evidence that colour diversity among normal SNe Ia can have a physical origin. In contrast, SN 2020ue has photometric properties, such as colour evolution and light curve decay rate, similar to those of transitional SNe. It is hence more spectroscopically aligned with normal SNe Ia. This is evident from spectroscopic indicators such as the pseudo-equivalent width of lines. Thus, such SNe Ia, which lie photometrically at the edge of the standard normal SNe Ia range, may be missed in cosmological SNe Ia samples. Our results highlight that a spectroscopic analysis of SNe Ia around peak brightness is crucial for identifying intrinsic colour variations and constructing a more complete and physically homogeneous SN Ia sample for precision cosmology. Si II

Discovery of a z ∼ 0.8 ultra steep spectrum radio halo in the MeerKAT-South Pole Telescope Survey

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 545:1 (2025) staf2022

Authors:

Isaac S Magolego, Roger P Deane, Kshitij Thorat, Ian Heywood, William Rasakanya, Manuel Aravena, Lindsey E Bleem, Maria G Campitiello, Kedar A Phadke, Justin Spilker, Joaquin D Vieira, Dazhi Zhou, Bradford A Benson, Scott Chapman, Ana Posses, Tim Schrabback, Antony Stark, David Vizgan

Abstract:

ABSTRACT Radio haloes are diffuse synchrotron sources that trace the turbulent intracluster medium (ICM) of galaxy clusters. However, their origin remains unknown. Two main formation models have been proposed: the hadronic model, in which relativistic electrons are continuously injected by cosmic-ray protons; and the leptonic turbulent re-acceleration model, where cluster mergers re-energize electrons in situ. A key discriminant between the two models would be the existence of ultra-steep spectrum radio haloes (USSRHs), which can only be produced through turbulent re-acceleration. Here, we report the discovery of an USSRH in the galaxy cluster SPT-CLJ2337–5942 at redshift $z = 0.78$ in the MeerKAT-South Pole Telescope 100 deg$^2$ UHF (0.58–1.09 GHz) survey. This discovery is noteworthy for two primary reasons: it is the highest redshift USSRH system to date; and the close correspondence of the radio emission with the thermal ICM as traced by Chandra X-ray observations, further supporting the leptonic re-acceleration model. The halo is underluminous for its mass, consistent with a minor merger origin, which produces steep-spectrum, lower luminosity haloes. This result demonstrates the power of wide-field, high-fidelity, low-frequency ($\lesssim 1$ GHz) surveys like the MeerKAT-SPT 100 deg$^2$ programme to probe the origin and evolution of radio haloes over cosmic time, ahead of the Square Kilometre Array.

The critical role of clumping in line-driven disc winds

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf2183

Authors:

Amin Mosallanezhad, Christian Knigge, Nicolas Scepi, Knox S Long, James H Matthews, Stuart A Sim, Austen Wallis

Abstract:

Abstract Radiation pressure on spectral lines is a promising mechanism for powering disc winds from accreting white dwarfs (AWDs) and active galactic nuclei (AGN). However, in radiation-hydrodynamic simulations, overionization reduces line opacity and quenches the line force, which suppresses outflows. Here, we show that small-scale clumping can resolve this problem. Adopting the microclumping approximation, our new simulations demonstrate that even modest volume filling factors (fV ∼ 0.1–0.01) can dramatically increase the wind mass-loss rate by lowering its ionization state—raising $\dot{M}_{\rm wind}$ and yielding $\dot{M}_{\rm wind}/\dot{M}_{\rm acc}\!\gtrsim \!10^{-4}$ for such modest filling factors. Clumpy wind models produce the UV resonance lines that are absent from smooth wind models. They can also reprocess a significant fraction of the disc luminosity and thus dramatically modify the broad-band optical/UV SED. Given that theory and observations indicate that disc winds are intrinsically inhomogeneous, clumping offers a physically motivated solution. Together, these results provide the first robust, self-consistent demonstration that clumping can reconcile line-driven wind theory with observations across AWDs and AGNs.

Pan-STARRS Follow-up of the Gravitational-wave Event S250818k and the Light Curve of SN2025ulz

The Astrophysical Journal Letters American Astronomical Society 995:1 (2025) L27

Authors:

JH Gillanders, ME Huber, M Nicholl, SJ Smartt, KW Smith, KC Chambers, DR Young, JW Tweddle, S Srivastav, MD Fulton, F Stoppa, GSH Paek, A Aamer, MR Alarcon, A Andersson, A Aryan, K Auchettl, T-W Chen, T de Boer, AKH Kong, J Licandro, T Lowe, D Magill, EA Magnier

Abstract:

Kilonovae are the scientifically rich—but observationally elusive—optical transient phenomena associated with compact binary mergers. Only a handful of events have been discovered to date, all through multiwavelength (gamma-ray) and multimessenger (gravitational-wave) signals. Given their scarcity, it is important to maximise the discovery possibility of new kilonova events. To this end, we present our follow-up observations of the gravitational-wave signal S250818k—a plausible binary neutron star merger at a distance of 237 ± 62 Mpc. Pan-STARRS tiled 286 and 318 deg2 (32% and 34% of the 90% sky localisation region) within 3 and 7 days of the GW signal, respectively. ATLAS covered 65% of the sky map within 3 days, but with lower sensitivity. These observations uncovered 47 new transients; however, none were deemed to be linked to S250818k. We undertook an expansive follow-up campaign of AT2025ulz, the purported counterpart to S250818k. The griz-band light curve, combined with our redshift measurement (z = 0.0849 ± 0.0003), all indicate that SN2025ulz is a type IIb supernova and thus not the counterpart to S250818k. We rule out the presence of an AT2017gfo-like kilonova within ≈27% of the distance posterior sampled by our Pan-STARRS pointings (≈9.1% across the total 90% 3D sky localisation). We demonstrate that early observations are optimal for probing the distance posterior of the 3D gravitational-wave sky map, and that SN2025ulz was a plausible kilonova candidate for ≲5 days, before ultimately being ruled out.

MeerKAT observations of white dwarf pulsars

Sissa Medialab Srl (2025) 061

Authors:

Emil Meintjes, PA Woudt, M Geyer, I Heywood, V Prayag, B Stappers, D Ah Buckley, M Caleb, R Fender, I Pelisoli