Evidence for an intrinsic luminosity-decay correlation in GRB radio afterglows
Monthly Notices of the Royal Astronomical Society (2025) staf1303
Abstract:
We present the discovery of a correlation, in a sample of 16 gamma-ray burst 8.5 GHz radio afterglows, between the intrinsic luminosity measured at 10 days in the rest frame, LRadio, 10d, and the average rate of decay past this time, α>10d. The correlation has a Spearman’s rank coefficient of −0.70 ± 0.13 at a significance of >3σ and a linear regression fit of $\alpha _{>10d} = -0.29^{+0.19}_{-0.28} \log \left(L_{\mathrm{Radio,10d}} \right) + 8.12^{+8.86}_{-5.88}$. This finding suggests that more luminous radio afterglows have higher average rates of decay than less luminous ones. We use a Monte Carlo simulation to show the correlation is not produced by chance or selection effects at a confidence level of >3σ. Previous studies found this relation in optical/UV, X-ray and GeV afterglow light curves, and we have now extended it to radio light curves. The Spearman’s rank coefficients and the linear regression slopes for the correlation in each waveband are all consistent within 1σ. We discuss how these new results in the radio band support the effects of observer viewing geometry, and time-varying microphysical parameters, as possible causes of the correlation as suggested in previous works.3D Adiabatic Simulations of Binary Black Hole Formation in AGN Discs
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1271
Abstract:
Pair production due to absorption of 2.2 MeV photons in magnetospheres of X-ray pulsars
Journal of High Energy Astrophysics Elsevier 48 (2025) 100420
Abstract:
Accretion onto strongly magnetized neutron stars in X-ray pulsars (XRPs) produces intense X-ray emission and gamma-ray photons, the latter arising from nuclear reactions and high-energy particle collisions in the stellar atmosphere. These gamma-rays interact with the magnetic field via one- and two-photon pair creation processes, generating electron-positron pairs. We investigate one-photon pair production in sub-critical XRPs, with a focus on how surface magnetic field strength affects gamma-ray absorption in the magnetosphere. Using general relativistic photon trajectory simulations, we map the spatial distribution of pair creation sites and quantify absorption efficiencies. We find that XRPs with surface fields B ≲ 10 12 G are largely transparent to 2.2MeV gamma-rays, while fields B ≳ 3 × 10 12 G lead to efficient absorption within a few tens of centimeters from the surface. For lower field strengths, absorption can occur at larger distances and outside the accretion column, offering a potential channel for radio emission. Our results provide new insight into the interplay between nuclear processes, magnetospheric structure, and multiwavelength radiation in XRPs.The plunging region of a thin accretion disc around a Schwarzschild black hole
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1256
Abstract:
Abstract A set of analytic solutions for the plunging region thermodynamics have been developed recently under the assumption that the fluid undergoes a gravity-dominated geodesic plunge into the black hole. We test this model against a dedicated 3D global GRMHD simulation of a thin accretion disc around a Schwarzschild black hole using the code AthenaK. Provided that we include the effects of non-adiabatic heating (plausibly from grid-scale magnetic dissipation), we find excellent agreement between the analytic model and the simulated quantities. These results are particularly important for existing and future electromagnetic black hole spin measurements, many of which do not include the plunging fluid in their emission modelling. This exclusion typically stems from the assumption of a zero-stress boundary condition at the ISCO, forcing all thermodynamic quantities to vanish. Instead, we find a non-zero $\delta _\mathcal {J}\approx 5.3 \%$ drop in the angular momentum over the plunging region, which is consistent with both prior simulations and observations. We demonstrate that this stress is small enough for the dynamics of the fluid in the plunging region to be well-described by geodesic trajectories, yet large enough to cause measurable dissipation near to the ISCO - keeping thermodynamic quantities from vanishing. In the plunging region, constant α-disc models are a physically inappropriate framework.Commensal Transient Searches with MeerKAT in Gamma-Ray Burst and Supernova Fields
The Astrophysical Journal American Astronomical Society 988:2 (2025) 227