Analysis of TID testing of a statistically large quantity of parts

Institute of Electrical and Electronics Engineers (IEEE) 00 (2021) 1-6

Authors:

Jorn Voegtli, Richard E Sharp, Lucy Oswald, Natalia Hong, Benjamin Archer

Two years of pulsar observations with the ultra-wide-band receiver on the Parkes radio telescope

Monthly Notices of the Royal Astronomical Society Oxford University Press 502:1 (2021) 1253-1262

Authors:

Simon Johnston, C Sobey, S Dai, M Keith, M Kerr, Rn Manchester, Ls Oswald, A Parthasarathy, Rm Shannon, P Weltevrede

Abstract:

The major programme for observing young, non-recycled pulsars with the Parkes telescope has transitioned from a narrow-band system to an ultra-wide-band system capable of observing between 704 and 4032 MHz. We report here on the initial 2 yr of observations with this receiver. Results include dispersion measure (DM) and Faraday rotation measure (RM) variability with time, determined with higher precision than hitherto, flux density measurements and the discovery of several nulling and mode changing pulsars. PSR J1703-4851 is shown to be one of a small subclass of pulsars that has a weak and a strong mode which alternate rapidly in time. PSR J1114-6100 has the fourth highest |RM| of any known pulsar despite its location far from the Galactic Centre. PSR J1825-1446 shows variations in both DM and RM likely due to its motion behind a foreground supernova remnant.

The Galactic center chimneys: The base of the multiphase outflow of the Milky Way

(2021)

Authors:

G Ponti, MR Morris, E Churazov, I Heywood, RP Fender

Relevance of jet magnetic field structure for blazar axionlike particle searches

Physical Review D American Physical Society 103:2 (2021) 23008

Authors:

James Davies, Manuel Meyer, Garret Cotter

Abstract:

Many theories beyond the Standard Model of particle physics predict the existence of axionlike particles (ALPs) that mix with photons in the presence of a magnetic field. One prominent indirect method of searching for ALPs is to look for irregularities in blazar gamma-ray spectra caused by ALP-photon mixing in astrophysical magnetic fields. This requires the modeling of magnetic fields between Earth and the blazar. So far, only very simple models for the magnetic field in the blazar jet have been used. Here, we investigate the effects of more complicated jet magnetic field configurations on these spectral irregularities by imposing a magnetic field structure model onto the jet model proposed by Potter & Cotter. We simulate gamma-ray spectra of Mrk 501 with ALPs and fit them to ALP-less spectra, scanning the ALP and B-field configuration parameter space, and show that the jet can be an important mixing region, able to probe new ALP parameter space around m a ∼ 1 – 1000     neV and g a γ ≳ 5 × 10 − 12     GeV − 1 . However, reasonable (i.e., consistent with observation) changes of the magnetic field structure can have a large effect on the mixing. For jets in highly magnetized clusters, mixing in the cluster can overpower mixing in the jet. This means that the current constraints using mixing in the Perseus cluster are still valid.

Bow-shocks, nova shells, disc winds and tilted discs: the Nova-Like V341 Ara Has It All

Monthly Notices of the Royal Astronomical Society Oxford University Press 501:2 (2021) 1951-1969

Authors:

N Castro Segura, C Knigge, JA Acosta-Pulido, Robert Fender, Anastasia Ponomareva, David Williams

Abstract:

V341 Ara was recently recognized as one of the closest (d ≃ 150 pc) and brightest (V ≃ 10) nova-like cataclysmic variables. This unique system is surrounded by a bright emission nebula, likely to be the remnant of a recent nova eruption. Embedded within this nebula is a prominent bow shock, where the system’s accretion disc wind runs into its own nova shell. In order to establish its fundamental properties, we present the first comprehensive multiwavelength study of the system. Long-term photometry reveals quasi-periodic, super-orbital variations with a characteristic time-scale of 10–16 d and typical amplitude of ≃1 mag. High-cadence photometry from theTransiting Exoplanet Survey Satellite (TESS) reveals for the first time both the orbital period and a ‘negative superhump’ period. The latter is usually interpreted as the signature of a tilted accretion disc. We propose a recently developed disc instability model as a plausible explanation for the photometric behaviour. In our spectroscopic data, we clearly detect antiphased absorption and emission-line components. Their radial velocities suggest a high mass ratio, which in turn implies an unusually low white-dwarf mass. We also constrain the wind mass-loss rate of the system from the spatially resolved [O III] emission produced in the bow shock; this can be used to test and calibrate accretion disc wind models. We suggest a possible association between V341 Ara and a ‘guest star’ mentioned in Chinese historical records in AD 1240. If this marks the date of the system’s nova eruption, V341 Ara would be the oldest recovered nova of its class and an excellent laboratory for testing nova theory.