A non-equipartition shockwave traveling in a dense circumstellar environment around SN2020oi
(2020)
Cosmic Evolution of Stellar-mass Black Hole Merger Rate in Active Galactic Nuclei
ASTROPHYSICAL JOURNAL American Astronomical Society 896:2 (2020) ARTN 138
VLA imaging of the XMM-LSS/VIDEO deep field at 1–2 GHz
Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 496:3 (2020) 3469-3481
Abstract:
Modern radio telescopes are routinely reaching depths where normal star-forming galaxies are the dominant observed population. Realizing the potential of radio as a tracer of star formation and black hole activity over cosmic time involves achieving such depths over representative volumes, with radio forming part of a larger multiwavelength campaign. In pursuit of this, we used the Karl G. Jansky Very Large Array (VLA) to image ∼5 deg2 of the VIDEO/XMM-LSS extragalactic deep field at 1–2 GHz. We achieve a median depth of 16 µJy beam−1 with an angular resolution of 4.5 arcsec. Comparisons with existing radio observations of XMM-LSS showcase the improved survey speed of the upgraded VLA: we cover 2.5 times the area and increase the depth by ∼20 per cent in 40 per cent of the time. Direction-dependent calibration and wide-field imaging were required to suppress the error patterns from off-axis sources of even modest brightness. We derive a catalogue containing 5762 sources from the final mosaic. Sub-band imaging provides in-band spectral indices for 3458 (60 per cent) sources, with the average spectrum becoming flatter than the canonical synchrotron slope below 1 mJy. Positional and flux density accuracy of the observations, and the differential source counts are in excellent agreement with those of existing measurements. A public release of the images and catalogue accompanies this article.PS15cey and PS17cke: prospective candidates from the Pan-STARRS Search for Kilonovae
(2020)
Radio afterglows of very high-energy gamma-ray bursts 190829A and 180720B
Monthly Notices of the Royal Astronomical Society Oxford University Press 496:3 (2020) 3326-3335