Classical Nova Carinae 2018: Discovery of circumbinary iron and oxygen

Monthly Notices of the Royal Astronomical Society Oxford University Press 494:1 (2020) 743-749

Authors:

Dominic McLoughlin, Katherine Blundell, Steven Lee

Abstract:

We present time-lapse spectroscopy of a classical nova explosion commencing 9 days after discovery. These data reveal the appearance of a transient feature in Fe ii and [O i]. We explore different models for this feature and conclude that it is best explained by a circumbinary disc shock-heated following the classical nova event. Circumbinary discs may play an important role in novae in accounting for the absorption systems known as THEA, the transfer of angular momentum, and the possible triggering of the nova event itself.

Uncovering the orbital dynamics of stars hidden inside their powerful winds: application to $\eta$ Carinae and RMC 140

(2020)

Authors:

David Grant, Katherine Blundell, James Matthews

Classical Nova Carinae 2018: Discovery of circumbinary iron and oxygen

(2020)

Authors:

Dominic McLoughlin, Katherine M Blundell, Steven Lee

A rapid change in X-ray variability and a jet ejection in the black hole transient MAXI J1820+070

(2020)

Authors:

Jeroen Homan, Joe Bright, Sara E Motta, Diego Altamirano, Zaven Arzoumanian, Arkadip Basak, Tomaso M Belloni, Edward M Cackett, Rob Fender, Keith C Gendreau, Erin Kara, Dheeraj R Pasham, Ronald A Remillard, James F Steiner, Abigail L Stevens, Phil Uttley

An extremely powerful long-lived superluminal ejection from the black hole MAXI J1820+070

Nature Astronomy Nature Research 4:7 (2020) 697-703

Authors:

JS Bright, RP Fender, SE Motta, DRA Williams, J Moldon, RM Plotkin, JCA Miller-Jones, I Heywood, E Tremou, R Beswick, GR Sivakoff, S Corbel, DAH Buckley, J Homan, E Gallo, AJ Tetarenko, TD Russell, DA Green, D Titterington, PA Woudt, RP Armstrong, PJ Groot, A Horesh, AJ van der Horst, EG Kording, VA McBride, A Rowlinson, RAMJ Wijers

Abstract:

Black holes in binary systems execute patterns of outburst activity where two characteristic X-ray states are associated with different behaviours observed at radio wavelengths. The hard state is associated with radio emission indicative of a continuously replenished, collimated, relativistic jet, whereas the soft state is rarely associated with radio emission, and never continuously, implying the absence of a quasi-steady jet. Here we report radio observations of the black hole transient MAXI J1820+070 during its 2018 outburst. As the black hole transitioned from the hard to soft state, we observed an isolated radio flare, which, using high-angular-resolution radio observations, we connect with the launch of bipolar relativistic ejecta. This flare occurs as the radio emission of the core jet is suppressed by a factor of over 800. We monitor the evolution of the ejecta over 200 days and to a maximum separation of 10″, during which period it remains detectable due to in situ particle acceleration. Using simultaneous radio observations sensitive to different angular scales, we calculate an accurate estimate of energy content of the approaching ejection. This energy estimate is far larger than that derived from the state transition radio flare, suggesting a systematic underestimate of jet energetics.