A spectroscopic, photometric, polarimetric and radio study of the eclipsing polar UZ Fornacis: the first simultaneous SALT and MeerKAT observations

(2020)

Authors:

Zwidofhelangani N Khangale, Stephen B Potter, Patrick A Woudt, David AH Buckley, Andrey N Semena, Enrico J Kotze, Danièl N Groenewald, Dante M Hewitt, Margaretha L Pretorius, Rob P Fender, Paul Groot, Steven Bloemen, Marc Klein-Wolt, Elmar Körding, Rudolf Le Poole, Vanessa A McBride, Lee Townsend, Kerry Paterson, Danielle LA Pieterse, Paul M Vreeswijk

Stratified disc wind models for the AGN broad-line region: ultraviolet, optical and X-ray properties

ArXiv 2001.03625 (2020)

Authors:

James H Matthews, Christian Knigge, Nick Higginbottom, Knox S Long, Stuart A Sim, Samuel W Mangham, Edward J Parkinson, Henrietta A Hewitt

The 1.28 GHz MeerKAT DEEP2 Image

The Astrophysical Journal: an international review of astronomy and astronomical physics American Astronomical Society (2020)

Authors:

T Mauch, Wd Cotton, Jj Condon, Am Matthews, Td Abbott, Rm Adam, Ma Aldera, Kmb Asad, Ef Bauermeister, Tgh Bennett, H Bester, Dh Botha, Lrs Brederode, Zb Brits, Sj Buchner, Jp Burger, F Camilo, Jm Chalmers, T Cheetham, D de Villiers, MS de Villiers, Ma Dikgale-Mahlakoana, LJ du Toit, Swp Esterhuyse, Bl Fanaroff

Abstract:

We present the confusion-limited 1.28 GHz MeerKAT DEEP2 image covering one $\approx 68'$ FWHM primary beam area with $7.6''$ FWHM resolution and $0.55 \pm 0.01$ $\mu$Jy/beam rms noise. Its J2000 center position $\alpha=04^h 13^m 26.4^s$, $\delta=-80^\circ 00' 00''$ was selected to minimize artifacts caused by bright sources. We introduce the new 64-element MeerKAT array and describe commissioning observations to measure the primary beam attenuation pattern, estimate telescope pointing errors, and pinpoint $(u,v)$ coordinate errors caused by offsets in frequency or time. We constructed a 1.4 GHz differential source count by combining a power-law count fit to the DEEP2 confusion $P(D)$ distribution from $0.25$ to $10$ $\mu$Jy with counts of individual DEEP2 sources between $10$ $\mu$Jy and $2.5$ mJy. Most sources fainter than $S \sim 100$ $\mu$Jy are distant star-forming galaxies obeying the FIR/radio correlation, and sources stronger than $0.25$ $\mu$Jy account for $\sim93\%$ of the radio background produced by star-forming galaxies. For the first time, the DEEP2 source count has reached the depth needed to reveal the majority of the star formation history of the universe. A pure luminosity evolution of the 1.4 GHz local luminosity function consistent with the Madau & Dickinson (2014) model for the evolution of star-forming galaxies based on UV and infrared data underpredicts our 1.4 GHz source count in the range $-5 \lesssim \log[S(\mathrm{Jy})] \lesssim -4$.

FPGA architecture to search for accelerated pulsars with SKA

Institute of Electrical and Electronics Engineers (IEEE) 00 (2020) 1-5

Authors:

P Thiagaraj, B Stappers, A Ghalame, L Levin, A Karastergiou, J Roy, M Mickaliger, M Keith

MKT J170456.2-482100: the first transient discovered by MeerKAT

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 491:1 (2020) 560-575

Authors:

Ln Driessen, I McDonald, Dah Buckley, M Caleb, Ej Kotze, Sb Potter, Km Rajwade, A Rowlinson, Bw Stappers, E Tremou, Pa Woudt, Rp Fender, R Armstrong, P Groot, I Heywood, A Horesh, Aj van der Horst, E Koerding, Va McBride, Jca Miller-Jones, Kp Mooley, Ramj Wijers

Abstract:

© 2019 The Author(s) We report the discovery of the first transient with MeerKAT, MKT J170456.2−482100, discovered in ThunderKAT images of the low-mass X-ray binary GX339−4. MKT J170456.2−482100 is variable in the radio, reaching a maximum flux density of 0.71 ± 0.11 mJy on 2019 October 12, and is undetected in 15 out of 48 ThunderKAT epochs. MKT J170456.2−482100 is coincident with the chromospherically active K-type sub-giant TYC 8332-2529-1, and ∼ 18 yr of archival optical photometry of the star shows that it varies with a period of 21.25 ± 0.04 d. The shape and phase of the optical light curve changes over time, and we detect both X-ray and UV emission at the position of MKT J170456.2−482100, which may indicate that TYC 8332-2529-1 has large star spots. Spectroscopic analysis shows that TYC 8332-2529-1 is in a binary, and has a line-of-sight radial velocity amplitude of 43 km s−1. We also observe a spectral feature in antiphase with the K-type sub-giant, with a line-of-sight radial velocity amplitude of ∼ 12 ± 10 km s−1, whose origins cannot currently be explained. Further observations and investigation are required to determine the nature of the MKT J170456.2−482100 system.