Cosmic ray acceleration to ultrahigh energy in radio galaxies

EPJ Web of Conferences EDP Sciences (2019)

Authors:

James H Matthews, Anthony R Bell, Anabella T Araudo, Katherine M Blundell

Abstract:

The origin of ultrahigh energy cosmic rays (UHECRs) is an open question. In this proceeding, we first review the general physical requirements that a source must meet for acceleration to 10-100 EeV, including the consideration that the shock is not highly relativistic. We show that shocks in the backflows of radio galaxies can meet these requirements. We discuss a model in which giant-lobed radio galaxies such as Centaurus A and Fornax A act as slowly-leaking UHECR reservoirs, with the UHECRs being accelerated during a more powerful past episode. We also show that Centaurus A, Fornax A and other radio galaxies may explain the observed anisotropies in data from the Pierre Auger Observatory, before examining some of the difficulties in associating UHECR anisotropies with astrophysical sources.

Cosmic ray acceleration to ultrahigh energy in radio galaxies

EPJ Web of Conferences EDP Sciences 210 (2019) 04002

Authors:

James Matthews, Anthony R Bell, AT Araudo, Katherine M Blundell

Abstract:

The origin of ultrahigh energy cosmic rays (UHECRs) is an open question. In this proceeding, we first review the general physical requirements that a source must meet for acceleration to 10-100 EeV, including the consideration that the shock is not highly relativistic. We show that shocks in the backflows of radio galaxies can meet these requirements. We discuss a model in which giant-lobed radio galaxies such as Centaurus A and Fornax A act as slowly-leaking UHECR reservoirs, with the UHECRs being accelerated during a more powerful past episode. We also show that Centaurus A, Fornax A and other radio galaxies may explain the observed anisotropies in data from the Pierre Auger Observatory, before examining some of the difficulties in associating UHECR anisotropies with astrophysical sources.

Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors?

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 485:2 (2019) 1559-1578

Authors:

SJ Prentice, C Ashall, PA James, L Short, PA Mazzali, D Bersier, PA Crowther, C Barbarino, T-W Chen, CM Copperwheat, MJ Darnley, L Denneau, N Elias-Rosa, M Fraser, L Galbany, A Gal-Yam, J Harmanen, DA Howell, G Hosseinzadeh, C Inserra, E Kankare, E Karamehmetoglu, GP Lamb, M Limongi, K Maguire, C McCully, F Olivares E, AS Piascik, G Pignata, DE Reichart, A Rest, T Reynolds, Ó Rodríguez, JLO Saario, S Schulze, SJ Smartt, KW Smith, J Sollerman, B Stalder, M Sullivan, F Taddia, S Valenti, SD Vergani, SC Williams, DR Young

Withdrawn as Duplicate: Testing the magnetar scenario for superluminous supernovae with circular polarimetry

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press (OUP) 486:1 (2019) l9-l9

Authors:

Aleksandar Cikota, Giorgos Leloudas, Mattia Bulla, Cosimo Inserra, Ting-Wan Chen, Jason Spyromilio, Ferdinando Patat, Zach Cano, Stefan Cikota, Michael W Coughlin, Erkki Kankare, Thomas B Lowe, Justyn R Maund, Armin Rest, Stephen J Smartt, Ken W Smith, Richard J Wainscoat, David R Young

AGN Disks Harden the Mass Distribution of Stellar-mass Binary Black Hole Mergers

ASTROPHYSICAL JOURNAL American Astronomical Society 876:2 (2019) ARTN 122

Authors:

Y Yang, I Bartos, Z Haiman, B Kocsis, Z Marka, Nc Stone, S Marka

Abstract:

The growing number of stellar-mass binary black hole mergers discovered by Advanced LIGO and Advanced Virgo are starting to constrain the binaries' origin and environment. However, we still lack sufficiently accurate modeling of binary formation channels to obtain strong constraints, or to identify sub-populations. One promising formation mechanism that could result in different black hole properties is binaries merging within the accretion disks of Active Galactic Nuclei (AGN). Here we show that the black holes' orbital alignment with the AGN disks preferentially selects heavier black holes. We carry out Monte Carlo simulations of orbital alignment with AGN disks, and find that AGNs harden the initial black hole mass function. Assuming an initial power law mass distribution $M_{\rm bh}^{-\beta}$, we find that the power law index changes by $\Delta \beta\sim1.3$, resulting in a more top-heavy population of merging black holes. This change is independent of the mass of, and accretion rate onto, the supermassive black hole in the center of the AGN. Our simulations predict an AGN-assisted merger rate of $\sim4$Gpc$^{-3}$yr$^{-1}$. With its hardened mass spectra, the AGN channel could be responsible for $10-50$% of gravitational-wave detections.