Black Hole Disks in Galactic Nuclei

(2018)

Authors:

Ákos Szölgyén, Bence Kocsis

Diffusion and Mixing in Globular Clusters

ASTROPHYSICAL JOURNAL American Astronomical Society 855:2 (2018) ARTN 87

Authors:

Yohai Meiron, Bence Kocsis

Abstract:

Collisional relaxation describes the stochastic process with which a self-gravitating system near equilibrium evolves in phase space due to the fluctuating gravitational field of the system. The characteristic timescale of this process is called the relaxation time. In this paper, we highlight the difference between two measures of the relaxation time in globular clusters: (i) the diffusion time with which the isolating integrals of motion (i.e. energy E and angular momentum magnitude L) of individual stars change stochastically and (ii) the asymptotic timescale required for a family of orbits to mix in the cluster. More specifically, the former corresponds to the instantaneous rate of change of a star's E or L, while the latter corresponds to the timescale for the stars to statistically forget their initial conditions. We show that the diffusion timescales of E and L vary systematically around the commonly used half-mass relaxation time in different regions of the cluster by a factor of ~10 and ~100, respectively, for more than 20% of the stars. We define the mixedness of an orbital family at any given time as the correlation coefficient between its E or L probability distribution functions and those of the whole cluster. Using Monte Carlo simulations, we find that mixedness converges asymptotically exponentially with a decay timescale that is ~10 times the half-mass relaxation time.

On the radiation beaming of bright X-ray pulsars and constraints on neutron star mass–radius relation

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 474:4 (2018) 5425-5436

Authors:

Alexander A Mushtukov, Patrick A Verhagen, Sergey S Tsygankov, Michiel van der Klis, Alexander A Lutovinov, Tatiana I Larchenkova

Accuracy of Estimating Highly Eccentric Binary Black Hole Parameters with Gravitational-wave Detections

ASTROPHYSICAL JOURNAL American Astronomical Society 855:1 (2018) ARTN 34

Authors:

Laszlo Gondan, Bence Kocsis, Peter Raffai, Zsolt Frei

Abstract:

Mergers of stellar-mass black holes on highly eccentric orbits are among the targets for ground-based gravitational-wave detectors, including LIGO, VIRGO, and KAGRA. These sources may commonly form through gravitational-wave emission in high velocity dispersion systems or through the secular Kozai-Lidov mechanism in triple systems. Gravitational waves carry information about the binaries' orbital parameters and source location. Using the Fisher matrix technique, we determine the measurement accuracy with which the LIGO-VIRGO-KAGRA network could measure the source parameters of eccentric binaries using a matched filtering search of the repeated burst and eccentric inspiral phases of the waveform. We account for general relativistic precession and the evolution of the orbital eccentricity and frequency during the inspiral. We find that the signal-to-noise ratio and the parameter measurement accuracy may be significantly higher for eccentric sources than for circular sources. This increase is sensitive to the initial pericenter distance, the initial eccentricity, and component masses. For instance, compared to a 30 Msun-30 Msun non-spinning circular binary, the chirp mass and sky localization accuracy can improve for an initially highly eccentric binary by a factor of ~129 (38) and ~2 (11) assuming an initial pericenter distance of 20 Mtot (10 Mtot).

SPIRITS 16tn in NGC 3556: A heavily obscured and low-luminosity supernova at 8.8 Mpc

(2018)

Authors:

Jacob E Jencson, Mansi M Kasliwal, Scott M Adams, Howard E Bond, Ryan M Lau, Joel Johansson, Assaf Horesh, Kunal P Mooley, Robert Fender, Kishalay De, Dónal O'Sullivan, Frank J Masci, Ann Marie Cody, Nadia Blagorodnova, Ori D Fox, Robert D Gehrz, Peter A Milne, Daniel A Perley, Nathan Smith, Schuyler D Van Dyk