ATCA detections of massive molecular gas reservoirs in dusty, high-z radio galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press (2016)
Abstract:
Observations using the 7 mm receiver system on the Australia Telescope Compact Array have revealed large reservoirs of molecular gas in two high-redshift radio galaxies: HATLAS J090426.9+015448 (zz = 2.37) and HATLAS J140930.4+003803 (zz = 2.04). Optically the targets are very faint, and spectroscopy classifies them as narrow-line radio galaxies. In addition to harbouring an active galactic nucleus the targets share many characteristics of sub-mm galaxies. Far-infrared data from Herschel-ATLAS suggest high levels of dust (>109 M⊙) and a correspondingly large amount of obscured star formation (∼1000 M⊙ / yr). The molecular gas is traced via the J = 1 → 0 transition of 12CO, its luminosity implying total H2 masses of (1.7 ± 0.3) × 1011 and (9.5 ± 2.4) × 1010 (αCO/0.8) M⊙ in HATLAS J090426.9+015448 and HATLAS J140930.4+003803 respectively. Both galaxies exhibit molecular line emission over a broad (∼1000 km/s) velocity range, and feature double-peaked profiles. We interpret this as evidence of either a large rotating disk or an on-going merger. Gas depletion timescales are ∼100 Myr. The 1.4 GHz radio luminosities of our targets place them close to the break in the luminosity function. As such they represent ‘typical’ zz > 2 radio sources, responsible for the bulk of the energy emitted at radio wavelengths from accretion-powered sources at high redshift, and yet they rank amongst the most massive systems in terms of molecular gas and dust content. We also detect 115 GHz rest-frame continuum emission, indicating a very steep high-radio-frequency spectrum, possibly classifying the targets as compact steep spectrum objects.Gamma-ray Novae: Rare or Nearby?
Monthly Notices of the Royal Astronomical Society Oxford University Press 465 (2016) 1218-1226
Abstract:
Classical Novae were revealed as a surprise source of γ-rays in Fermi LAT observations. During the first 8 years since the LAT was launched, 6 novae in total have been detected to >5σ in γ-rays, in contrast to the 69 discovered optically in the same period. We attempt to resolve this discrepancy by assuming all novae are γ-ray emitters, and assigning peak one-day fluxes based on a flat distribution of the known emitters to a simulated population. To determine optical parameters, the spatial distribution and magnitudes of bulge and disc novae in M31 are scaled to the Milky Way, which we approximate as a disc with a 20 kpc20 kpc radius and elliptical bulge with semi major axis 3 kpc3 kpc and axis ratios 2:1 in the xy plane. We approximate Galactic reddening using a double exponential disc with vertical and radial scale heights of rd=5 kpcrd=5 kpc and zd=0.2 kpczd=0.2 kpc, and demonstrate that even such a rudimentary model can easily reproduce the observed fraction of γ-ray novae, implying that these apparently rare sources are in fact nearby and not intrinsically rare. We conclude that classical novae with mR ≤ 12 and within ≈8 kpc≈8 kpc are likely to be discovered in γ-rays using the Fermi LAT.Flares, wind and nebulae: the 2015 December mini-outburst of V404 Cygni
(2016)
OGLE16aaa - a Signature of a Hungry Super Massive Black Hole
Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press (OUP) (2016) slw213
Inclination dependence of QPO phase lags in black hole X-ray binaries
ArXiv 1610.03469 (2016)