Detecting gravitational waves from the galactic center with Pulsar Timing

(2014)

Authors:

Alak Ray, Bence Kocsis, Simon Portegies Zwart

The low or retrograde spin of the first extragalactic microquasar: implications for Blandford-Znajek powering of jets

(2014)

Authors:

Matthew Middleton, James Miller-Jones, Rob Fender

Astronomy below the survey threshold in the SKA era

Proceedings of Science 9-13-June-2014 (2014)

Authors:

J Zwart, J Wall, A Karim, C Jackson, R Norris, J Condon, J Afonso, I Heywood, M Jarvis, F Navarrete, I Prandoni, E Rigby, H Rottgering, M Santos, M Sargent, N Seymour, R Taylor, T Vernstrom

Abstract:

Astronomy at or below the survey threshold has expanded significantly since the publication of the original Science with the Square Kilometer Array in 1999 and its update in 2004. The techniques in this regime may be broadly (but far from exclusively) defined as confusion or P(D) analyses (analyses of one-point statistics), and stacking, accounting for the flux-density distribution of noise-limited images co-added at the positions of objects detected/isolated in a different waveband. Here we discuss the relevant issues, present some examples of recent analyses, and consider some of the consequences for the design and use of surveys with the SKA and its pathfinders.

Discovery of carbon radio recombination lines in absorption towards cygnus A

Monthly Notices of the Royal Astronomical Society 437:4 (2014) 3506-3515

Authors:

JBR Oonk, RJ van Weeren, F salgado, LK Morabito, AGGM Tielens, HJA Rottgering, A Asgekar, GJ White, A Alexov, J Anderson, IM Avruch, F Batejat, R Beck, ME Bell, I van Bemmel, MJ Bentum, G Bernardi, P Best, A Bonafede, F Breitling, M Brentjens, J Broderick, M Brüggen, HR Butcher, B Ciardi, JE Conway, A Corstanje, F de Gasperin, E de Geus, M de Vos, S Duscha, J Eislöffel, D Engels, J van Enst, H Falcke, RA Fallows, R Fender, C Ferrari, W Frieswijk, MA Garrett, J Griemeier, JP Hamaker, TE Hassa, G Heald, JWT Hessels, M Hoeft, A Horneffer, A van der Horst, M Iacobelli, NJ Jackson, E Juette, A Karastergiou, W Klijn, J Kohler, VI Kondratiev, M Kramer, M Kuniyoshi, G Kuper, J van Leeuwen, P Maat, G Macario, G Mann, S Markoff, JP McKean, M Mevius, JCA Miller-Jones, JD Mol, DD Mulcahy, H Munk, MJ Norden, E Orru, H Paas, M Pandey-Pommier, VN Pandey, R Pizzo, AG Polatidis, W Reich, AMM scaife, A schoenmakers, D schwarz, A shulevski, J sluman, O smirnov, C Sobey, BW Stappers, M steinmetz, J swinbank, M Tagger, Y Tang, C Tasse, S ter Veen, S Thoudam, C Toribio, R van Nieuwpoort, R Vermeulen, C Vocks, C Vogt, RAMJ Wijers, MW Wise, O Wucknitz

Abstract:

We present the first detection of carbon radio recombination line absorption along the line of sight to Cygnus A. The observations were carried out with the Low Frequency Array in the 33-57MHz range. These low-frequency radio observations provide us with a new line of sight to study the diffuse, neutral gas in our Galaxy. To our knowledge this is the first time that foreground Milky Way recombination line absorption has been observed against a bright extragalactic background source. By stacking 48 carbon α lines in the observed frequency range we detect carbon absorption with a signal-to-noise ratio of about 5. The average carbon absorption has a peak optical depth of 2 × 10-4, a line width of 10 km s-1 and a velocity of +4 kms-1 with respect to the local standard of rest. The associated gas is found to have an electron temperature Te ̃ 110K and density ne ̃ 0.06 cm-3. These properties imply that the observed carbon a absorption likely arises in the cold neutral medium of the Orion arm of the Milky Way. Hydrogen and helium lines were not detected to a 3σ peak optical depth limit of 1.5 × 10-4 for a 4 kms-1 channel width. Radio recombination lineσ aσσociated with Cygnuσ A itself were also searched for, but are not detected. We set a 3σ upper limit of 1.5 ×; 10-4 for the peak optical depth of these lines for a 4 kms-1 channel width. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Morphological classification of radio sources for galaxy evolution and cosmology with the SKA

Proceedings of Science 9-13-June-2014 (2014)

Authors:

S Makhathini, OM Smirnov, MJ Jarvis, I Heywood

Abstract:

Morphologically classifying radio sources in continuum images with the SKA has the potential to address some of the key questions in cosmology and galaxy evolution. In particular, we may use different classes of radio sources as independent tracers of the dark-matter density field, and thus overcome cosmic variance in measuring large-scale structure, while on the galaxy evolution side we could measure the mechanical feedback from FRII and FRI jets. This work makes use of a MeqTrees-based simulations framework to forecast the ability of the SKA to recover true source morphologies at high redshifts. A suite of high resolution images containing realistic continuum source distributions with different morphologies (FRI, FRII, starburst galaxies) is fed through an SKA Phase 1 simulator, then analysed to determine the sensitivity limits at which the morphologies can still be distinguished. We also explore how changing the antenna distribution affects these results.