A JVLA 10~degree^2 deep survey

Authors:

Matthew Jarvis, S Bhatnagar, M Bruggen, C Ferrari, I Heywood, M Hardcastle, E Murphy, R Taylor, O Smirnov, C Simpson, V Smolcic, J Stil, KVD Heyden

Abstract:

(Abridged)One of the fundamental challenges for astrophysics in the 21st century is finding a way to untangle the physical processes that govern galaxy formation and evolution. Given the importance and scope of this problem, the multi-wavelength astronomical community has used the past decade to build up a wealth of information over specific extragalactic deep fields to address key questions in galaxy formation and evolution. These fields generally cover at least 10square degrees to facilitate the investigation of the rarest, typically most massive, galaxies and AGN. Furthermore, such areal coverage allows the environments to be fully accounted for, thereby linking the single halo to the two-halo terms in the halo occupation distribution. Surveys at radio wavelengths have begun to lag behind those at other wavelengths, especially in this medium-deep survey tier. However, the survey speed offered by the JVLA means that we can now reach a point where we can begin to obtain commensurate data at radio wavelengths to those which already exists from the X-ray through to the far-infrared over ~10 square degrees. We therefore present the case for a 10 square degree survey to 1.5uJy at L-band in A or B Array, requiring ~4000 hours to provide census of star-formation and AGN-accretion activity in the Universe. For example, the observations will allow galaxies forming stars at 10Msolar/yr to be detected out to z~1 and luminous infrared galaxies (1000Msolar/yr to be found out to z~6. Furthermore, the survey area ensures that we will have enough cosmic volume to find these rare sources at all epochs. The bandwidth will allow us to determine the polarisation properties galaxies in the high-redshift Universe as a function of stellar mass, morphology and redshift.

Detecting edges in the X-ray surface brightness of galaxy clusters

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP): Policy P - Oxford Open Option A

Authors:

JS Sanders, AC Fabian, HR Russell, SA Walker, KM Blundell

Abstract:

The effects of many physical processes in the intracluster medium of galaxy clusters imprint themselves in X-ray surface brightness images. It is therefore important to choose optimal methods for extracting information from and enhancing the interpretability of such images. We describe in detail a gradient filtering edge detection method that we previously applied to images of the Centaurus cluster of galaxies. The Gaussian gradient filter measures the gradient in the surface brightness distribution on particular spatial scales. We apply this filter on different scales to Chandra X-ray observatory images of two clusters with AGN feedback, the Perseus cluster and M87, and a merging system, A3667. By combining filtered images on different scales using radial filters spectacular images of the edges in a cluster are produced. We describe how to assess the significance of features in filtered images. We find the gradient filtering technique to have significant advantages for detecting many kinds of features compared to other analysis techniques, such as unsharp-masking. Filtering cluster images in this way in a hard energy band allows shocks to be detected.

Fornax A, Centaurus A and other radio galaxies as sources of ultra-high energy cosmic rays

Monthly Notices of the Royal Astronomical Society: Letters Blackwell Publishing

Authors:

JH Matthews, AR Bell, KM Blundell, AT Araudo

Abstract:

The origin of ultra-high energy cosmic rays (UHECRs) is still unknown. It has recently been proposed that UHECR anisotropies can be attributed to starbust galaxies or active galactic nuclei. We suggest that the latter is more likely and that giant-lobed radio galaxies such as Centaurus A and Fornax A can explain the data.

GG Carinae: Discovery of orbital phase dependent 1.583-day periodicities in the B[e] supergiant binary

Monthly Notices of the Royal Astronomical Society Oxford University Press

Authors:

Augustus Porter, Katherine Blundell, Philipp Podsiadlowski, steven lee

Gravitational radiation driven supermassive black hole binary inspirals as periodically variable electromagnetic sources

arXiv.org

Authors:

Bence Kocsis, Zoltán Haiman, Kristen Menou

Abstract:

Supermassive black hole binaries (SMBHBs) produced in galaxy mergers are thought to complete their coalescence, below separations of r_GW=10^{-3} (M_BH/10^8 M_sun)^{3/4} pc, as their orbit decays due to the emission of gravitational waves (GWs). It may be possible to identify such GW-driven inspirals statistically in an electromagnetic (EM) survey for variable sources. A GW-driven binary spends a characteristic time T_GW at each orbital separation r_orb < r_GW that scales with the corresponding orbital time t_orb as T_GW = (const) t_orb^{8/3}. If the coalescing binary produces variations in the EM emission on this timescale, then it could be identified as a variable source with a characteristic period t_var = t_orb. The incidence rate of sources with similar inferred BH masses, showing near-periodic variability on the time-scale t_var, would then be proportional to t_var^{8/3}. Luminosity variations corresponding to a fraction f_Edd<0.01 of the Eddington luminosity would have been missed in current surveys. However, if the binary inspirals are associated with quasars, we show that a dedicated survey could detect the population of SMBHBs with a range of periods around tens of weeks. The discovery of a population of periodic sources whose abundance obeys N_var = (const) t_var^{8/3} would confirm (i) that the orbital decay is indeed driven by GWs, and (ii) that circumbinary gas is present at small orbital radii and is being perturbed by the BHs. Deviations from the t_var^{8/3} power-law could constrain the structure of the circumbinary gas disk and viscosity-driven orbital decay. We discuss constraints from existing data, and quantify the sensitivity and sky coverage that could yield a detection in future surveys.