Detecting highly dispersed bursts with next-generation radio telescopes
Monthly Notices of the Royal Astronomical Society 436:1 (2013) 371-379
Abstract:
Recently, there have been reports of six bright, dispersed bursts of coherent radio emission found in pulsar surveys with the Parkes Multibeam Receiver. Not much is known about the progenitors of these bursts, but they are highly energetic, and probably of extragalactic origin. Their properties suggest extreme environments and interesting physics, but in order to understand and study these events, more examples need to be found. Fortunately, the recent boom in radio astronomy means many 'next-generation' radio telescopes are set to begin observing in the near future. In this paper we discuss the prospects of detecting short extragalactic bursts, in both beamformed and imaging data, using these instruments. We find that often the volume of space probed by radio surveys of fast transients is limited by the dispersion measure of the source, rather than its physical distance (although the two quantities are related). This effect is larger for low-frequency telescopes, where propagation effects are more prominent, but their larger fields-of-view are often enough to compensate for this. Our simulations suggest that the low-frequency component of Square Kilometre Array Phase 1 could find an extragalactic burst every hour.We also show that if the sensitivity of the telescope is above a certain threshold, imaging surveysmay prove more fruitful than beamformed surveys in finding these sorts of transients. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.Early science with the Karoo Array Telescope test array KAT-7
South African Journal of Science 109:7-8 (2013)
Herschel-ATLAS/GAMA: What determines the far-infrared properties of radio galaxies?
Monthly Notices of the Royal Astronomical Society 432:1 (2013) 609-625
Abstract:
We perform a stacking analysis of Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) data in order to obtain isothermal dust temperatures and rest-frame luminosities at 250 μm (L250), for a well-defined sample of 1599 radio sources over the H-ATLAS Phase 1/Galaxy and Mass Assembly (GAMA) area. The radio sample is generated using a combination of NRAO VLA Sky Survey data and K-band United Kingdom Infrared Telescope Deep Sky Survey-Large Area Survey data, over the redshift range 0.01 < z < 0.8. The far-infrared(FIR) properties of the sample are investigated as a function of 1.4-GHz luminosity, redshift, projected radio-source size and radio spectral index. In order to search for stellar mass-dependent relations, we split the parent sample into those sources which are below and above 1.5 L*K.After correcting for stellar mass and redshift, we find no relation between the 250-μm luminosity and the 1.4-GHz radio luminosity of radio active galactic nuclei. This implies thata galaxy's nominal radio luminosity has little or no bearing on the star formation rate (SFR)and/or dust mass content of the host system, although this does not mean that other variables(e.g. radio source size) related to the jets do not have an effect. The L250 of both the radio detected and non-radio-detected galaxies (defined as those sources not detected at 1.4 GHz but detected in the Sloan Digital Sky Survey with r< 22) rises with increasing redshift. Compact radio sources (<30 kpc) are associated with higher 250 μm luminosities and dust temperatures than their more extended (>30 kpc) counterparts. The higher dust temperature suggests that this may be attributed to enhanced SFRs in compact radio galaxies, but whether this is directly or indirectly due to radio activity (e.g. jet-induced or merger-driven star formation) is as yet unknown.For matched samples in LK and g-r, sub-1.5 L*K and super-1.5 L*K radio-detected galaxies have 0.89±0.18 and 0.49±0.12 times the 250μm luminosity of their non-radio-detected counterparts. Thus, while no difference in L250 is observed in sub-1.5 L*K radio-detected galaxies, a strong deficit is observed in super-1.5 L*K radio-detected galaxies. We explain these results in terms of the hotter, denser and richer halo environments massive radio galaxies maintain and are embedded in. These environments are expected to quench the cold gas and dust supply needed for further star formation and therefore dust production. Our results indicate that all massive radio galaxies (>1.5 L*K) may have systematically lower FIR luminosities(~25 per cent) than their colour-matched non-radio-detected counterparts. Finally, no relation between radio spectral index and L250 is found for the subset of 1.4-GHz radio sources with detections at 330 MHz. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.Inclination and relativistic effects in the outburst evolution of black hole transients
Monthly Notices of the Royal Astronomical Society 432:2 (2013) 1330-1337
Abstract:
We have systematically studied the effect of the orbital inclination in the outburst evolution of black hole transients. We have included all the systems observed by the Rossi X-ray Timing Explorer in which the thermal, accretion disc component becomes strongly dominant at some point of the outburst. Inclination is found to modify the shape of the tracks that these systems display in the colour/luminosity diagrams traditionally used for their study. Black hole transients seen at low inclination reach softer spectra and their accretion discs look cooler than those observed closer to edge-on. This difference can be naturally explained by considering inclination-dependent relativistic effects on accretion discs. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.Multiwavelength campaign on Mrk 509: XI. Reverberation of the Fe K α line
Astronomy and Astrophysics 549 (2013)