FRATs: A real-time search for fast radio transients with LOFAR

Proceedings of Science 112 (2010)

Authors:

S Ter Veen, H Falcke, R Fender, JR Hörandel, CW James, S Rawlings, P Schellart, B Stappers, R Wijers, M Wise, P Zarka

Abstract:

The radio sky is not steady on timescales below one second. Pulsars (including the rotating radio transients RRATs) and solar-system objects (e.g. solar flares, jupiter bursts, saturn lightning) give rise to sub-second pulses. Also in many known radiation processes coherent radiation can more easily occur at longer wavelengths, for which the size of the emitting region is comparable to the wavelength. This makes low frequency surveys ideally suited for the detection of new emission mechanisms caused by compact objects, such as white dwarfs, neutron stars and black holes. To detect as many of these Fast Radio Transients (FRATs) as possible, we are setting up a technique to detect and identify short single pulses with LOFAR in real-time, with unprecedented sensitivity in this frequency range, and excellent discrimination against terrestrial signals.

Following the 2008 outburst decay of the black hole candidate H 1743-322 in X-ray and radio

Monthly Notices of the Royal Astronomical Society 401:2 (2010) 1255-1263

Authors:

PG Jonker, J Miller-Jones, J Homan, E Gallo, M Rupen, J Tomsick, RP Fender, P Kaaret, DTH Steeghs, MAP Torres, R Wijnands, S Markoff, WHG Lewin

Abstract:

In this paper, we report on radio (Very Large Array and Austrialian Telescope Compact Array) and X-ray (RXTE, Chandra and Swift) observations of the outburst decay of the transient black hole candidate H 1743-322 in early 2008. We find that the X-ray light curve followed an exponential decay, levelling off towards its quiescent level. The exponential decay time-scale is ≈4 days and the quiescent flux corresponds to a luminosity of erg s-1. This together with the relation between quiescent X-ray luminosity and orbital period reported in the literature suggests that H 1743-322 has an orbital period longer than ≈10 h. Both the radio and X-ray light curve show evidence for flares. The radio-X-ray correlation can be well described by a power-law with index ≈0.18. This is much lower than the index of ≈0.6-0.7 found for the decay of several black hole transients before. The radio spectral index measured during one of the radio flares while the source is in the low-hard state is -0.5 ± 0.15, which indicates that the radio emission is optically thin. This is unlike what has been found before in black hole sources in the low-hard state. We attribute the radio flares and the low index for the radio-X-ray correlation to the presence of shocks downstream the jet flow, triggered by ejection events earlier in the outburst. We find no evidence for a change in X-ray power-law spectral index during the decay, although the relatively high extinction of NH ≈ 2.3 × 1022 cm-2 limits the detected number of soft photons and thus the accuracy of the spectral fits. © 2009 RAS.

Goonhilly: A new site for e-MERLIN and the EVN

Proceedings of Science 125 (2010)

Authors:

HR Klöckner, S Rawlings, I Heywood, R Beswick, TWB Muxlow, ST Garrington, J Hatchell, MG Hoare, MJ Jarvis, I Jones, HJ Van Langevelde

Abstract:

The benefits for the e-MERLIN and EVN arrays of using antennae at the satellite communication station at Goonhilly in Cornwall are discussed. The location of this site - new to astronomy - will provide an almost equal distribution of long baselines in the east-west- and north-south directions, and opens up the possibility to get significantly improved observations of equatorial fields with e-MERLIN. These additional baselines will improve the sensitivity on a set of critical spatial scales and will increase the angular resolution of e-MERLIN by a factor of two. e-MERLIN observations, including many allocated under the e-MERLIN Legacy programme, will benefit from the enhanced angular resolution and imaging capability especially for sources close to or below the celestial equator (where ESO facilities such as ALMA will operate) of including the Goonhilly telescopes. Furthermore, the baselines formed between Goonhilly and the existing stations will close the gap between the baselines of e-MERLIN and those of the European VLBI Network (EVN) and therefore enhance the legacy value of e-MERLIN datasets.

Herschel-ATLAS: Far-infrared properties of radio-selected galaxies

Monthly Notices of the Royal Astronomical Society 409:1 (2010) 122-131

Authors:

MJ Hardcastle, JS Virdee, MJ Jarvis, DG Bonfield, L Dunne, S Rawlings, JA Stevens, NM Christopher, I Heywood, T Mauch, D Rigopoulou, A Verma, IK Baldry, SP Bamford, S Buttiglione, A Cava, DL Clements, A Cooray, SM Croom, A Dariush, G De Zotti, S Eales, J Fritz, DT Hill, D Hughes, R Hopwood, E Ibar, RJ Ivison, DH Jones, J Loveday, SJ Maddox, MJ Michałowski, M Negrello, P Norberg, M Pohlen, M Prescott, EE Rigby, ASG Robotham, G Rodighiero, D Scott, R Sharp, DJB Smith, P Temi, E Van Kampen

Abstract:

We use the Herschel-Astrophysical Terahertz Large Area Survey (ATLAS) science demonstration data to investigate the star formation properties of radio-selected galaxies in the GAMA-9h field as a function of radio luminosity and redshift. Radio selection at the lowest radio luminosities, as expected, selects mostly starburst galaxies. At higher radio luminosities, where the population is dominated by active galactic nuclei (AGN), we find that some individual objects are associated with high far-infrared luminosities. However, the far-infrared properties of the radio-loud population are statistically indistinguishable from those of a comparison population of radio-quiet galaxies matched in redshift and K-band absolute magnitude. There is thus no evidence that the host galaxies of these largely low-luminosity (Fanaroff-Riley class I), and presumably low-excitation, AGN, as a population, have particularly unusual star formation histories. Models in which the AGN activity in higher luminosity, high-excitation radio galaxies is triggered by major mergers would predict a luminosity-dependent effect that is not seen in our data (which only span a limited range in radio luminosity) but which may well be detectable with the full Herschel-ATLAS data set. © 2010 The Authors. Journal compilation © 2010 RAS.

High Resolution Observations of IRAS FSC10214: A z=2.3 gravitationally lensed starburst/AGN

Proceedings of Science 125 (2010)

Authors:

RP Deane, S Rawlings, I Heywood, HR Klöckner, K Grainge

Abstract:

We present new radio data of IRAS FSC10214, a gravitationally lensed starburst/AGN composite galaxy at z=2.3. Our Bayesian MCMC source plane reconstruction places what we argue to be the AGN core (VLA 8 GHz) and the scattered quasar light (HST rest-frame ultraviolet) at an angle perpendicular to the ultraviolet polarisation angle. The size of and projected distance to the dominant HST UV emission component is roughly consistent with the smooth polarisation angle variation observed with HST polarimetry, suggesting that the modelled offset between these two components is reasonably accurate. Both of these components lie inside a larger 1.6 GHz component (observed with MERLIN) thought to be dominated by a radio lobe based on its steep radio spectrum but very likely to include star formation as well given the substantial molecular mass (MH2 ~ 1012 µ−1 M) in this system. Our lens model finds the HST rest-frame UV component is preferentially magnified due to its closer proximity to the cusp of the caustic. A preferential magnification of the narrow line region dust clouds, where the ultraviolet scattering is assumed to occur, supports previous claims that differential magnification could mask the expected polycyclic aromatic hydrocarbon spectral features in the Spitzer mid-infrared spectrum which broadly trace the star forming regions. fu¨rther predictions will be tested with upcoming EVN and VLBA observations.