A heuristic prediction of the cosmic evolution of the co-luminosity functions
Astrophysical Journal 702:2 (2009) 1321-1335
Abstract:
We predict the emission line luminosity functions (LFs) of the first 10 rotational transitions of 12C16O in galaxies at redshift z = 0 to z = 10. This prediction relies on a recently presented simulation of the molecular cold gas content in 3 × 107 evolving galaxies based on the Millennium Simulation. We combine this simulation with a model for the conversion between molecular mass and CO-line intensities, which incorporates the following mechanisms: (1) molecular gas is heated by the cosmic microwave background (CMB), starbursts (SBs), and active galactic nuclei (AGNs); (2) molecular clouds in dense or inclined galaxies can overlap; (3) compact gas can attain a smooth distribution in the densest part of disks; (4) CO luminosities scale with metallicity changes between galaxies; and (5) CO luminosities are always detected against the CMB. We analyze the relative importance of these effects and predict the cosmic evolution of the CO-LFs. The most notable conclusion is that the detection of regular galaxies (i.e., no AGN, no massive SB) at high z ≳ 7 in CO emission will be dramatically hindered by the weak contrast against the CMB, in contradiction to earlier claims that CMB heating will ease the detection of high-redshift CO. The full simulation of extragalactic CO lines and the predicted CO-LFs at any redshift can be accessed online (http://s-cubed.physics.ox.ac.uk/, go to "S3-SAX") and they should be useful for the modeling of CO-line surveys with future telescopes, such as the Atacama Large Millimeter/submillimeter Array or the Square Kilometre Array. © 2009 The American Astronomical Society. All rights reserved.A virtual sky with extragalactic h I and co lines for the square kilometre array and the atacama large millimeter/submillimeter array
Astrophysical Journal 703:2 (2009) 1890-1903
Abstract:
We present a sky simulation of the atomic H I-emission line and the first 10 12C16O rotational emission lines of molecular gas in galaxies beyond the Milky Way. The simulated sky field has a comoving diameter of 500 h -1 Mpc; hence, the actual field of view depends on the (user-defined) maximal redshift z max; e.g., for z max = 10, the field of view yields 4 × 4 deg2. For all galaxies, we estimate the line fluxes, line profiles, and angular sizes of the H I and CO-emission lines. The galaxy sample is complete for galaxies with cold hydrogen masses above 108 M. This sky simulation builds on a semi-analytic model of the cosmic evolution of galaxies in a Λ cold dark matter (ΛCDM) cosmology. The evolving CDM distribution was adopted from the Millennium Simulation, an N-body CDM simulation in a cubic box with a side length of 500 h -1 Mpc. This side length limits the coherence scale of our sky simulation: it is long enough to allow the extraction of the baryon acoustic oscillations in the galaxy power spectrum, yet the position and amplitude of the first acoustic peak will be imperfectly defined. This sky simulation is a tangible aid to the design and operation of future telescopes, such as the Square Kilometre Array, Large Millimeter Telescope, and Atacama Large Millimeter/Submillimeter Array. The results presented in this paper have been restricted to a graphical representation of the simulated sky and fundamental dN/dz analyses for peak flux density limited and total flux limited surveys of H I and CO. A key prediction is that H I will be harder to detect at redshifts z ≳ 2 than predicted by a no-evolution model. The future verification or falsification of this prediction will allow us to qualify the semi-analytic models. © 2009. The American Astronomical Society. All rights reserved.An anticorrelation between X-ray luminosity and Hα equivalent width in X-ray binaries
Monthly Notices of the Royal Astronomical Society 393:4 (2009) 1608-1616
Abstract:
We report an anticorrelation between continuum luminosity and the equivalent width (EW) of the Hα emission line in X-ray binary systems. The effect is evident both in a universal monotonic increase in Hα EW with time following outbursts, as systems fade, and in a comparison between measured EWs and contemporaneous X-ray measurements. The effect is most clear for black hole binaries in the low/hard X-ray state, which is prevalent at X-ray luminosities below ∼1 per cent of the Eddington luminosity. We do not find strong evidence for significant changes in line profiles across accretion state changes, but this is hampered by a lack of good data at such times. The observed anticorrelation, highly significant for black hole binaries, is only marginally so for neutron star systems, for which there are far less data. Comparison with previously established correlations between optical and X-ray luminosity suggests that the line luminosity is falling as the X-ray and optical luminosities drop, but not as fast, approximately, as LHα ∝ L∼0.4X ∝ L∼0.7opt. We briefly discuss possible origins for such an effect, including the optical depth, form of the irradiating spectrum and geometry of the accretion flow. Further refinement of the relation in the future may allow measurements of Hα EW to be used to estimate the luminosity of, and hence the distance to, X-ray binary systems. Beyond this, further progress will require a better sample of spectrophotometric data. © 2009 RAS.Broad-band X-ray spectral evolution of GX 339-4 during a state transition
Monthly Notices of the Royal Astronomical Society 392:3 (2009) 992-997
Abstract:
We report on X-ray and soft γ-ray observations of the black hole candidate GX 339-4 during its 2007 outburst, performed with the RXTE and INTEGRAL satellites. The hardness-intensity diagram of all RXTE/PCA data combined shows a q-shaped track similar to that observed in previous outbursts. The evolution in the diagram suggested that a transition from hard- to soft-intermediate state occurred, simultaneously with INTEGRAL observations performed in March. The transition is confirmed by the timing analysis presented in this work, which reveals that a weak type-A quasi-periodic oscillation (QPO) replaces a strong type-C QPO. At the same time, spectral analysis shows that the flux of the high-energy component shows a significant decrease in its flux. However, we observe a delay (roughly one day) between variations of the spectral parameters of the high-energy component and changes in the flux and timing properties. The changes in the high-energy component can be explained either in terms of the high-energy cut-off or in terms of variations in the reflection component. We compare our results with those from a similar transition during the 2004 outburst of GX 339-4. © 2008 RAS.Constraints on black hole accretion in v Puppis
Monthly Notices of the Royal Astronomical Society 393:3 (2009) 1070-1072