The Galactic Oxygen Abundance Gradient

The Astrophysical Journal American Astronomical Society 481:1 (1997) l47-l50

Authors:

Stephen J Smartt, William Robert J Rolleston

A complete sample of quasars from the 7C redshift survey

ArXiv astro-ph/9704163 (1997)

Authors:

Chris J Willott, Steve Rawlings, Katherine M Blundell, Mark Lacy

Abstract:

We present details of a new sample of radio-loud quasars drawn from 0.013 sr of the 7C Redshift Survey. This sample is small (21 quasars) but complete in that every object with an unresolved nucleus and/or broad emission lines with S(151MHz) > 0.5 Jy has been discovered. The dependence of the quasar fraction with redshift and radio luminosity is investigated, providing new evidence supporting the unification of radio-loud quasars and powerful radio galaxies. This 7C sample is compared with optically-selected quasars, in order to determine whether there are systematic biases in the different selection techniques. There are no lightly reddened (Av approx. 1) quasars in our sample amongst the 14 with z < 2. The discovery of a reddened quasar at z = 2.034 and its implications are discussed. A tight correlation between radio luminosity and optical/near infrared continuum luminosity for a subset of the sample is also found.

A complete sample of quasars from the 7C redshift survey

(1997)

Authors:

Chris J Willott, Steve Rawlings, Katherine M Blundell, Mark Lacy

Cosmology with redshift surveys of radio sources

(1997)

Authors:

Steve Rawlings, Katherine M Blundell, Mark Lacy, Chris J Willott, Stephen A Eales

Optical and infrared investigation toward the z = 3.8 quasar pair PC 1643+4631A, B

Astrophysical Journal Letters 479:1 (1997) L5-L8

Authors:

R Saunders, JC Baker, MN Bremer, AJ Bunker, G Cotter, S Eales, K Grainge, T Haynes, ME Jones, M Lacy, G Pooley, S Rawlings

Abstract:

In a companion Letter, Jones et al. report the discovery of a cosmic microwave background decrement, indicative of a distant cluster with mass ∼1015 M⊙, toward the quasar pair PC 1643+4631A, B (z = 3.79, 3.83, separation 1980). To search for the cluster responsible, we have obtained R-, J-, and K-band images of the field and have also carried out optical spectroscopy of selected objects in it. No such cluster is evident in these images. Assuming that the cluster causing the decrement is similar to massive clusters already known, our magnitude limits imply that it must lie at about or beyond z = 1. This provides independent support for the X-ray-based distance argument of Jones et al. The cluster must gravitationally lens objects behind it; for a cluster z around 1-2, the Einstein ring radius for sources at z ≈ 3.8 is ∼100″. Simple modeling, producing simultaneously the Sunyaev-Zeldovich effect and the lensing, shows that the source positions of quasars A and B lie within 1100 of each other and may indeed be coincident. The two quasar spectra are found to be remarkably similar apart from their 1% redshift difference. Assuming that A and B are images of a single quasar, we present a possible explanation of this difference.