Reinforcement learning enhanced quantum-inspired algorithm for combinatorial optimization

Machine Learning: Science and Technology IOP Publishing 2:2 (2020) 025009

Authors:

Dmitrii Beloborodov, Ae Ulanov, Jakob N Foerster, Shimon Whiteson, Ai Lvovsky

Abstract:

Quantum hardware and quantum-inspired algorithms are becoming increasingly popular for combinatorial optimization. However, these algorithms may require careful hyperparameter tuning for each problem instance. We use a reinforcement learning agent in conjunction with a quantum-inspired algorithm to solve the Ising energy minimization problem, which is equivalent to the Maximum Cut problem. The agent controls the algorithm by tuning one of its parameters with the goal of improving recently seen solutions. We propose a new Rescaled Ranked Reward (R3) method that enables a stable single-player version of self-play training and helps the agent escape local optima. The training on any problem instance can be accelerated by applying transfer learning from an agent trained on randomly generated problems. Our approach allows sampling high quality solutions to the Ising problem with high probability and outperforms both baseline heuristics and a black-box hyperparameter optimization approach.

Quantum-enhanced interferometry with large heralded photon-number states

NPJ QUANTUM INFORMATION 6:1 (2020) ARTN 89

Authors:

Gs Thekkadath, Me Mycroft, Ba Bell, Cg Wade, A Eckstein, Ds Phillips, Rb Patel, A Buraczewski, Ae Lita, T Gerrits, Sw Nam, M Stobinska, Ai Lvovsky, Ia Walmsley

Abstract:

© 2020, The Author(s). Quantum phenomena such as entanglement can improve fundamental limits on the sensitivity of a measurement probe. In optical interferometry, a probe consisting of N entangled photons provides up to a N enhancement in phase sensitivity compared to a classical probe of the same energy. Here, we employ high-gain parametric down-conversion sources and photon-number-resolving detectors to perform interferometry with heralded quantum probes of sizes up to N = 8 (i.e. measuring up to 16-photon coincidences). Our probes are created by injecting heralded photon-number states into an interferometer, and in principle provide quantum-enhanced phase sensitivity even in the presence of significant optical loss. Our work paves the way toward quantum-enhanced interferometry using large entangled photonic states.

Fully reconfigurable coherent optical vector–matrix multiplication

Optics Letters Optical Society of America 45:20 (2020) 5752-5755

Authors:

James Spall, Xianxin Guo, Thomas D Barrett, Ai Lvovsky

Abstract:

Optics is a promising platform in which to help realize the next generation of fast, parallel, and energy-efficient computation. We demonstrate a reconfigurable free-space optical multiplier that is capable of over 3000 computations in parallel, using spatial light modulators with a pixel resolution of only 340×340. This enables vector–matrix multiplication and parallel vector–vector multiplication with vector size of up to 56. Our design is, to the best of our knowledge, the first to simultaneously support optical implementation of reconfigurable, large-sized, and real-valued linear algebraic operations. Such an optical multiplier can serve as a building block of special-purpose optical processors such as optical neural networks and optical Ising machines.

Comprehensive model and performance optimization of phase-only spatial light modulators

Measurement Science and Technology IOP Publishing 31:12 (2020) 125202

Authors:

A A Pushkina, J I Costa-Filho, G Maltese, Alexander Lvovsky

Abstract:

Several spurious effects are known to degrade the performance of phase-only spatial light modulators. We introduce a comprehensive model that takes into account the major ones: curvature of the back panel, pixel crosstalk and the internal Fabry–Perot cavity. To estimate the model parameters with high accuracy, we generate blazed grating patterns and acquire the intensity response curves of the first and second diffraction orders. The quantitative model is used to generate compensating holograms, which can produce optical modes with high fidelity.

Observing Geometry of Quantum States in a Three-Level System.

Physical review letters 125:15 (2020) 150401

Authors:

Jie Xie, Aonan Zhang, Ningping Cao, Huichao Xu, Kaimin Zheng, Yiu-Tung Poon, Nung-Sing Sze, Ping Xu, Bei Zeng, Lijian Zhang

Abstract:

In quantum mechanics, geometry has been demonstrated as a useful tool for inferring nonclassical behaviors and exotic properties of quantum systems. One standard approach to illustrate the geometry of quantum systems is to project the quantum state space onto the Euclidean space via measurements of observables on the system. Despite the great success of this method in studying two-level quantum systems (qubits) with the celebrated Bloch sphere representation, it is still difficult to reveal the geometry of multidimensional quantum systems. Here we report the first experiment measuring the geometry of such projections beyond the qubit. Specifically, we observe the joint numerical ranges of a triple of observables in a three-level photonic system, providing a complete classification of these ranges. We further show that the geometry of different classes reveals ground-state degeneracies of a Hamiltonian as a linear combination of the observables, which is related to quantum phases in the thermodynamic limit. Our results offer a versatile geometric approach for exploring the properties of higher-dimensional quantum systems.