Magnetic field sensing beyond the standard quantum limit using 10-spin NOON states.

Science 324:5931 (2009) 1166-1168

Authors:

Jonathan A Jones, Steven D Karlen, Joseph Fitzsimons, Arzhang Ardavan, Simon C Benjamin, G Andrew D Briggs, John JL Morton

Abstract:

Quantum entangled states can be very delicate and easily perturbed by their external environment. This sensitivity can be harnessed in measurement technology to create a quantum sensor with a capability of outperforming conventional devices at a fundamental level. We compared the magnetic field sensitivity of a classical (unentangled) system with that of a 10-qubit entangled state, realized by nuclei in a highly symmetric molecule. We observed a 9.4-fold quantum enhancement in the sensitivity to an applied field for the entangled system and show that this spin-based approach can scale favorably as compared with approaches in which qubit loss is prevalent. This result demonstrates a method for practical quantum field sensing technology.

Magnetic field sensing beyond the standard quantum limit using 10-spin noon states

Science 324:5931 (2009) 1166-1168

Authors:

JA Jones, SD Karlen, J Fitzsimons, A Ardavan, SC Benjamin, GAD Briggs, JJL Morton

Abstract:

Quantum entangled states can be very delicate and easily perturbed by their external environment. This sensitivity can be harnessed in measurement technology to create a quantum sensor with a capability of outperforming conventional devices at a fundamental level. We compared the magnetic field sensitivity of a classical (unentangled) system with that of a 10-qubit entangled state, realized by nuclei in a highly symmetric molecule. We observed a 9.4-fold quantum enhancement in the sensitivity to an applied field for the entangled system and show that this spinbased approach can scale favorably as compared with approaches in which qubit loss is prevalent. This result demonstrates a method for practical quantum field sensing technology.

A new mechanism of generating broadband pulsar-like polarization

Sissa Medialab Srl (2009) 016

Authors:

Houshang Ardavan, Arzhang Ardavan, Joseph Fasel, John Middleditch, Mario Perez, Andrea Schmidt, John Singleton

Quantum computing with an electron spin ensemble

(2009)

Authors:

JH Wesenberg, A Ardavan, GAD Briggs, JJL Morton, RJ Schoelkopf, DI Schuster, K Mølmer

Storing quantum information in chemically engineered nanoscale magnets

Journal of Materials Chemistry 19:12 (2009) 1754-1760

Authors:

A Ardavan, SJ Blundell

Abstract:

We review the implementation of quantum information processing using quantum spins and pulsed spin resonance techniques. Molecular magnets, nanoscale clusters of coupled transition metal ions, offer various potential advantages over other spin systems as the building blocks of a quantum computer. We describe the strategies which must be employed in order to implement quantum algorithms in such nanoscale magnets and explain why, when evaluating the suitability of any physical system for embodying a qubit, it is essential to determine the phase relaxation time appropriate for an individual molecular spin. Experiments utilising pulsed spin resonance techniques show that the phase relaxation times in at least some molecular magnets are long enough to permit multiple qubit operations to be performed. © The Royal Society of Chemistry 2009.