Simulating high-temperature superconductivity model Hamiltonians with atoms in optical lattices
Physical Review A - Atomic, Molecular, and Optical Physics 73:5 (2006)
Abstract:
We investigate the feasibility of simulating different model Hamiltonians used in high-temperature superconductivity. We briefly discuss the most common models and then focus on the simulation of the so-called t-J-U Hamiltonian using ultra-cold atoms in optical lattices. For this purpose, previous simulation schemes to realize the spin interaction term J are extended. We especially overcome the condition of a filling factor of exactly one, which otherwise would restrict the phase of the simulated system to a Mott-insulator. Using ultra-cold atoms in optical lattices allows simulation of the discussed models for a very wide range of parameters. The time needed to simulate the Hamiltonian is estimated and the accuracy of the simulation process is numerically investigated for small systems. © 2006 The American Physical Society.Efficient dynamical simulation of strongly correlated one-dimensional quantum systems
LECT NOTES COMPUT SC 3743 (2006) 555-563
Abstract:
Studying the unitary time evolution of strongly correlated quantum systems is one of the most challenging theoretical and experimental problems in physics. For an important class of one-dimensional (11)) systems dynamical simulations have become possible since the advent of the time-evolving block decimation (TEBD) algorithm. We study the computational properties of TEBD using the Bose-Hubbard model (BHM) as a test-bed. We demonstrate its efficiency and verify its accuracy through comparisons with an exactly solvable small system and via the convergence of one- and two-particle observables in a larger system.Detection and characterization of multipartite entanglement in optical lattices
Physical Review A - Atomic, Molecular, and Optical Physics 72:4 (2005)
Abstract:
We investigate the detection and characterization of entanglement based on the quantum network introduced in Phys. Rev. Lett. 93, 110501 (2004) for different experimental scenarios. We first give a detailed discussion of the ideal scheme where no errors are present and full spatial resolution is available. Then we analyze the implementation of the network in an optical lattice. We find that even without any spatial resolution entanglement can be detected and characterized in various kinds of states including cluster states and macroscopic superposition states. We also study the effects of detection errors and imperfect dynamics on the detection network. For our scheme to be practical these errors have to be on the order of one over the number of investigated lattice sites. Finally, we consider the case of limited spatial resolution and conclude that significant improvement in entanglement detection and characterization compared to having no spatial resolution is only possible if single lattice sites can be resolved. © 2005 The American Physical Society.Numerical analysis of coherent many-body currents in a single atom transistor
Physical Review A - Atomic, Molecular, and Optical Physics 72:4 (2005)
Abstract:
We study the dynamics of many atoms in the recently proposed single-atom-transistor setup [A. Micheli, A. J. Daley, D. Jaksch, and P. Zoller, Phys. Rev. Lett. 93, 140408 (2004)] using recently developed numerical methods. In this setup, a localized spin-12 impurity is used to switch the transport of atoms in a one-dimensional optical lattice: in one state the impurity is transparent to probe atoms, but in the other acts as a single-atom mirror. We calculate time-dependent currents for bosons passing the impurity atom, and find interesting many-body effects. These include substantially different transport properties for bosons in the strongly interacting (Tonks) regime when compared with fermions, and an unexpected decrease in the current when weakly interacting probe atoms are initially accelerated to a nonzero mean momentum. We also provide more insight into the application of our numerical methods to this system, and discuss open questions about the currents approached by the system on long time scales. © 2005 The American Physical Society.Fault-tolerant dissipative preparation of atomic quantum registers with fermions
Physical Review A - Atomic, Molecular, and Optical Physics 72:3 (2005)