The Clustering of Active Galactic Nuclei and Star Forming Galaxies in the LoTSS Deep Fields

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1626

Authors:

CL Hale, PN Best, KJ Duncan, R Kondapally, MJ Jarvis, M Magliocchetti, HJA Röttgering, DJ Schwarz, DJB Smith, J Zheng

Abstract:

Abstract Using deep observations across three of the LOFAR Two-metre Sky Survey Deep Fields, this work measures the angular clustering of star forming galaxies (SFGs) and low-excitation radio galaxies (LERGs) to z ≲1.5 for faint sources, S144 MHz ≥200 μJy. We measure the angular auto-correlation of LOFAR sources in redshift bins and their cross-correlation with multi-wavelength sources to measure the evolving galaxy bias for SFGs and LERGs. Our work shows the bias of the radio-selected SFGs increases from $b=0.90^{+0.11}_{-0.10}$ at z ∼0.2 to $b=2.94^{+0.36}_{-0.36}$ at z ∼1.2; faster than the assumed b($z$)∝1/D($z$) models adopted in previous LOFAR cosmology studies (at sensitivities where AGN dominate), but in broad agreement with previous work. We further study the luminosity dependence of bias for SFGs and find little evidence for any luminosity dependence at fixed redshift, although uncertainties remain large for the sample sizes available. The LERG population instead shows a weaker redshift evolution with $b=2.33^{+0.28}_{-0.27}$ at z ∼0.7 to $b=2.65^{+0.57}_{-0.55}$ at z ∼1.2, though it is also consistent with the assumed bias evolution model (b($z$)∝1/D($z$)) within the measured uncertainties. For those LERGs which reside in quiescent galaxies (QLERGs), there is weak evidence that they are more biased than the general LERG population and evolve from b=$2.62^{+0.33}_{-0.33}$ at z ∼0.7 to $b=3.08^{+0.85}_{-0.84}$ at z ∼1.2. This suggests the halo environment of radio sources may be related to their properties. These measurements can help constrain models for the bias evolution of these source populations, and can help inform multi-tracer analyses.

Gone with the Wind: JWST-MIRI Unveils a Strong Outflow from the Quiescent Stellar-mass Black Hole A0620-00

The Astrophysical Journal American Astronomical Society 991:2 (2025) 157

Authors:

Zihao Zuo, Gabriele Cugno, Joseph Michail, Elena Gallo, David M Russell, Richard M Plotkin, Fan Zou, M Cristina Baglio, Piergiorgio Casella, Fraser J Cowie, Rob Fender, Poshak Gandhi, Sera Markoff, Federico Vincentelli, Fraser Lewis, Jon M Miller, James CA Miller-Jones, Alexandra Veledina

Abstract:

We present new observations of the black hole X-ray binary A0620-00 using the Mid-Infrared (MIR) Instrument on the James Webb Space Telescope, during a state where the X-ray luminosity is 9 orders of magnitude below Eddington, and coordinated with radio, near-infrared, and optical observations. The goal is to understand the nature of the excess MIR emission originally detected by Spitzer redward of 8 μm. The stellar-subtracted MIR spectrum is well modeled by a power law with a spectral index of α = 0.72 ± 0.01, where the flux density scales with frequency as Fν ∝ να. The spectral characteristics, along with rapid variability—a 40% flux flare at 15 μm and 25% achromatic variability in the 5–12 μm range—rule out a circumbinary disk as the source of the MIR excess. The Low Resolution Spectrometer reveals a prominent emission feature at 7.5 μm, resulting from the blend of three hydrogen recombination lines. While the contribution from partially self-absorbed synchrotron radiation cannot be ruled out, we argue that thermal bremsstrahlung from a warm (a few tens of thousands of Kelvin) wind accounts for the MIR excess; the same outflow is responsible for the emission lines. The inferred mass outflow rate indicates that the system’s low luminosity is due to a substantial fraction of the mass supplied by the donor star being expelled through a wind rather than accreted onto the black hole.

The connection between the fastest astrophysical jets and the spin axis of their black hole

Nature Astronomy Nature Research (2025)

Authors:

RP Fender, SE Motta

Abstract:

Abstract Astrophysical jets signpost the most extreme phenomena in the Universe. Despite a century of study, connections between the physics of black holes and the processes underpinning the formation and launch of these jets remain elusive. Here we present a statistically significant sample of transient jet speeds from stellar-mass black holes and neutron stars. The fastest jets are exclusively from black holes and propagate along a fixed axis across several ejection phases. This provides strong evidence that the most relativistic jets propagate along the spin axis of the black hole that launches them. However, we find no correlation between reported spin estimates and the jet speeds, indicating that some issues remain in connecting the theories of jet formation with spin measurements. By contrast, slower jets can be launched by both black holes and neutron stars and can change in direction or precess, indicating that they are launched from the accretion flow.

The dependence of the Type Ia Supernova colour–luminosity relation on their host galaxy properties

Monthly Notices of the Royal Astronomical Society Oxford University Press 543:3 (2025) 2180-2203

Authors:

S Ramaiya, M Vincenzi, MJ Jarvis, P Wiseman, M Sullivan

Abstract:

Using the Dark Energy Survey 5-yr sample, we determine the properties of type Ia supernova (SN Ia) host galaxies across a wide multiwavelength range – from the optical to far-infrared – including data from the Herschel and Spitzer space telescopes. We categorize the SNe Ia into three distinct groups according to the distribution of their host galaxies on the star formation rate (SFR) – stellar mass () plane. Each region comprises host galaxies at distinct stages in their evolutionary pathways: Region 1 – low-mass hosts; Region 2 – high-mass, star-forming hosts and Region 3 – high-mass, passive hosts. We find SNe Ia in host galaxies located in Region 1 have the steepest slope (quantified by ) between their colours and luminosities, with . This differs at the significance level to SNe Ia in Region 3, which have the shallowest colour–luminosity slope with . After correcting SNe Ia in each subsample by their respective , events in Region 3 (high-mass, passive hosts) are mag () brighter, post-standardization. We conclude that future cosmological analyses should apply standardization relations to SNe Ia based upon the region in which the SN host galaxy lies in the SFR– plane. Alternatively, cosmological analyses should restrict the SN Ia sample to events whose host galaxies occupy a single region of this plane.

Calibrating baryonic effects in cosmic shear with external data in the LSST era

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 543:2 (2025) 1518-1534

Authors:

Amy Wayland, David Alonso, Matteo Zennaro

Abstract:

<jats:title>ABSTRACT</jats:title> <jats:p>Cosmological constraints derived from weak lensing (WL) surveys are limited by baryonic effects, which suppress the non-linear matter power spectrum on small scales. By combining WL measurements with data from external tracers of the gas around massive structures, it is possible to calibrate baryonic effects and, therefore, obtain more precise cosmological constraints. In this study, we generate mock data for a Stage-IV weak lensing survey such as the Legacy Survey of Space and Time (LSST), X-ray gas fractions, and stacked kinetic Sunyaev–Zel’dovich (kSZ) measurements, to jointly constrain cosmological and astrophysical parameters describing baryonic effects (using the Baryon Correction Model–BCM). First, using WL data alone, we quantify the level to which the BCM parameters will need to be constrained to recover the cosmological constraints obtained under the assumption of perfect knowledge of baryonic feedback. We identify the most relevant baryonic parameters and determine that they must be calibrated to a precision of $\sim 10$–20 per cent to avoid significant degradation of the fiducial WL constraints. We forecast that long-term X-ray data from $\mathcal {O}(5000)$ clusters should be able to reach this threshold for the parameters that characterize the abundance of hot virialized gas. Constraining the distribution of ejected gas presents a greater challenge, however, but we forecast that long-term kSZ data from a cosmic microwave background-S4-like experiment should achieve the level of precision required for full self-calibration.</jats:p>