Discovery of hot gas in outflow in NGC 3379
Astrophysical Journal 688:2 (2008) 1000-1008
Abstract:
We report the discovery of a faint (Lx ∼ 4 ± 1.5 × 1037 ergs s-1, 0.5-2 keV), outflowing gaseous hot interstellar medium (ISM) in NGC 3379. This represents the lowest X-ray luminosity ever measured from a hot phase of the ISM in a nearby early-type galaxy. The discovery of the hot ISM in a very deep Chandra observation was possible thanks to its unique spectral and spatial signatures, which distinguish it from the integrated stellar X-ray emission, responsible for most of the unresolved emission in the Chandra data. This hot component is found in a region of ∼800 pc in radius at the center of the galaxy and has a total mass M ∼ 3 ± 1 × 105 M⊙. Independent theoretical prediction of the characteristics of an ISM in this galaxy, based on the intrinsic properties of NGC 3379, reproduce well the observed luminosity, temperature, and radial distribution and mass of the hot gas, and indicate that the gas is in an outflowing phase, predicted by models but not observed in any system so far.Evolution of the disc radii during outburst of x-ray binaries as infered from thermal emission
International Conference Recent Advances in Natural Language Processing, RANLP (2008)
Abstract:
Compact object displays drastic spectral and timing changing from the beginning to the end of an outburst, showing the different efficiencies of accretion processes. Black hole binaries hence exhibit schematically two different states in X-ray spectra: The first dominated by a thermal component and the second by a hard powerlaw shape like. Whereas the hard component is often attributed to the emission of a radiatively inefficient corona, the thermal component is interpreted as the emission of the optically thick accretion disc. The commonly accepted picture suggests that the observed transition between hard and soft states is associated by a drop in the accretion efficiency of the thermal component by a recession of the internal disc radius in hard states. However, recent studies based on relativistically broadened iron line and the thermal component strength analysis would tend to show the presence of the disc in the vicinity of the horizon. By a reanalysis of archive spectra where thermal emission is present, we tracked the values of the disc radii during outbursts among several sources. Indeed, whereas a constant inner radius would imply that the disc luminosity should monotonically depends on the temperature, we show that this relationship seems to deviate at the lowest luminosities. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.First measurement of the fraction of top-quark pair production through gluon-gluon fusion
Physical Review D - Particles, Fields, Gravitation and Cosmology 78:11 (2008)
Abstract:
We present the first measurement of σ(gg→tt̄)/ σ(pp̄→tt̄). We use 0.96fb-1 of s=1.96TeV pp̄ collision data recorded with the CDF II detector at Fermilab. Using charged particles with low transverse momentum in tt̄ events, we find σ(gg→ tt̄)/σ(pp̄→tt̄)=0.07±0.14(stat)±0. 07(syst), corresponding to a 95% confidence level upper limit of 0.33, in agreement with the standard model next-to-leading-order prediction of 0.15±0.05. © 2008 The American Physical Society.High energy astrophysics with the next generation of radio astronomy facilities
International Conference Recent Advances in Natural Language Processing, RANLP (2008)
Abstract:
High energy astrophysics has made good use of combined high energy (X-ray, g-ray) and radio observations to uncover connections between outbursts, accretion, particle acceleration and kinetic feedback to the local ambient medium. In the field of microquasars the connections have been particularly important. However, radio astronomy has been relying on essentially the same facilities for the past ∼ 25 years, whereas high-energy astrophysics, in particular space-based research, has had a series of newer and more powerful missions. In the next fifteen years this imbalance is set to be redressed, with a whole familiy of new radio facilities under development en route to the Square Kilometre Array (SKA) in the 2020s. In this brief review I will summarize these future prospects for radio astronomy, and focus on possibly the most exciting of the new facilities to be built in the next decade, the Low Frequency Array LOFAR, and its uses in high energy astrophysics. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial- ShareAlike Licence.Internal shocks model for microquasar jets
International Conference Recent Advances in Natural Language Processing, RANLP (2008)