Galaxy Zoo: The properties of merging galaxies in the nearby Universe - local environments, colours, masses, star-formation rates and AGN activity
ArXiv 0903.5057 (2009)
Abstract:
Following the study of Darg et al. (2009; hereafter D09a) we explore the environments, optical colours, stellar masses, star formation and AGN activity in a sample of 3003 pairs of merging galaxies drawn from the SDSS using visual classifications from the Galaxy Zoo project. While D09a found that the spiral-to-elliptical ratio in (major) mergers appeared higher than that of the global galaxy population, no significant differences are found between the environmental distributions of mergers and a randomly selected control sample. This makes the high occurrence of spirals in mergers unlikely to be an environmental effect and must, therefore, arise from differing time-scales of detectability for spirals and ellipticals. We find that merging galaxies have a wider spread in colour than the global galaxy population, with a significant blue tail resulting from intense star formation in spiral mergers. Galaxies classed as star-forming using their emission-line properties have average star-formation rates approximately doubled by the merger process though star formation is negligibly enhanced in merging elliptical galaxies. We conclude that the internal properties of galaxies significantly affect the time-scales over which merging systems can be detected (as suggested by recent theoretical studies) which leads to spirals being `over-observed' in mergers. We also suggest that the transition mass $3\times10^{10}{M}_{\astrosun}$, noted by \citet{kauffmann1}, below which ellipticals are rare could be linked to disc survival/destruction in mergers.Galaxy Zoo: the fraction of merging galaxies in the SDSS and their morphologies
ArXiv 0903.4937 (2009)
Abstract:
We present the largest, most homogeneous catalogue of merging galaxies in the nearby universe obtained through the Galaxy Zoo project - an interface on the world-wide web enabling large-scale morphological classification of galaxies through visual inspection of images from the Sloan Digital Sky Survey (SDSS). The method converts a set of visually-inspected classifications for each galaxy into a single parameter (the `weighted-merger-vote fraction,' $f_m$) which describes our confidence that the system is part of an ongoing merger. We describe how $f_m$ is used to create a catalogue of 3003 visually-selected pairs of merging galaxies from the SDSS in the redshift range $0.005 < z <0.1$. We use our merger sample and values of $f_m$ applied to the SDSS Main Galaxy Spectral sample (MGS) to estimate that the fraction of volume-limited ($M_r < -20.55$) major mergers ($1/3 < {M}^*_1/{M}^*_2 < 3$) in the nearby universe is $1 - 3 \times C%$ where $C \sim 1.5$ is a correction factor for spectroscopic incompleteness. Having visually classified the morphologies of the constituent galaxies in our mergers, we find that the spiral-to-elliptical ratio of galaxies in mergers is higher by a factor $\sim 2$ relative to the global population. In a companion paper, we examine the internal properties of these merging galaxies and conclude that this high spiral-to-elliptical ratio in mergers is due to a longer time-scale over which mergers with spirals are detectable compared to mergers with ellipticals.Inclusive search for squark and Gluino production in pp̄ collisions at s=1.96TeV
Physical Review Letters 102:12 (2009)
Abstract:
We report on a search for inclusive production of squarks and gluinos in pp̄ collisions at s=1.96TeV, in events with large missing transverse energy and multiple jets of hadrons in the final state. The study uses a CDF Run II data sample corresponding to 2fb-1 of integrated luminosity. The data are in good agreement with the standard model predictions, giving no evidence for any squark or gluino component. In an R-parity conserving minimal supergravity scenario with A0=0, μ<0, and tan β=5, 95 C.L. upper limits on the production cross sections in the range between 0.1 and 1 pb are obtained, depending on the squark and gluino masses considered. For gluino masses below 280GeV/c2, arbitrarily large squark masses are excluded at the 95 C.L., while for mass degenerate gluinos and squarks, masses below 392GeV/c2 are excluded at the 95 C.L. © 2009 The American Physical Society.The Disappearance of the Progenitors of Supernovae 1993J and 2003gd
(2009)