MAXI J1848-015: The first detection of relativistically moving outflows from a globular cluster X-ray binary

Astrophysical Journal Letters IOP Publishing 948 (2023) L7

Authors:

A Bahramian, E Tremou, Aj Tetarenko, Jca Miller-Jones, Rp Fender, S Corbel, Dra Williams, J Strader, F Carotenuto, R Salinas, Ja Kennea, Se Motta, Pa Woudt, Jh Matthews, Td Russell

Abstract:

Over the past decade, observations of relativistic outflows from outbursting X-ray binaries in the Galactic field have grown significantly. In this work, we present the first detection of moving and decelerating radio-emitting outflows from an X-ray binary in a globular cluster. MAXI J1848−015 is a recently discovered transient X-ray binary in the direction of the globular cluster GLIMPSE-C01. Using observations from the Karl G. Jansky Very Large Array, and a monitoring campaign with the MeerKAT observatory for 500 days, we model the motion of the outflows. This represents some of the most intensive, long-term coverage of relativistically moving X-ray binary outflows to date. We use the proper motions of the outflows from MAXI J1848−015 to constrain the component of the intrinsic jet speed along the line of sight, β int cos θ ejection , to be =0.19 ± 0.02. Assuming it is located in GLIMPSE-C01, at 3.4 kpc, we determine the intrinsic jet speed, β int = 0.79 ± 0.07, and the inclination angle to the line of sight, θ ejection = 76° ± 2°. This makes the outflows from MAXI J1848−015 somewhat slower than those seen from many other known X-ray binaries. We also constrain the maximum distance to MAXI J1848−015 to be 4.3 kpc. Finally, we discuss the implications of our findings for the nature of the compact object in this system, finding that a black hole primary is a viable (but as-of-yet unconfirmed) explanation for the observed properties of MAXI J1848−015. If future data and/or analysis provide more conclusive evidence that MAXI J1848−015 indeed hosts a black hole, it would be the first black hole X-ray binary in outburst identified in a Galactic globular cluster.

Bursts from Space: MeerKAT - The first citizen science project dedicated to commensal radio transients

(2023)

Authors:

Alex Andersson, Chris Lintott, Rob Fender, Joe Bright, Francesco Carotenuto, Laura Driessen, Mathilde Espinasse, Kelebogile Gaseahalwe, Ian Heywood, Alexander J van der Horst, Sara Motta, Lauren Rhodes, Evangelia Tremou, David RA Williams, Patrick Woudt, Xian Zhang, Steven Bloemen, Paul Groot, Paul Vreeswijk, Stefano Giarratana, Payaswini Saikia, Jonas Andersson, Lizzeth Ruiz Arroyo, Loïc Baert, Matthew Baumann, Wilfried Domainko, Thorsten Eschweiler, Tim Forsythe, Sauro Gaudenzi, Rachel Ann Grenier, Davide Iannone, Karla Lahoz, Kyle J Melville, Marianne De Sousa Nascimento, Leticia Navarro, Sai Parthasarathi, Piilonen, Najma Rahman, Jeffrey Smith, B Stewart, Newton Temoke, Chloe Tworek, Isabelle Whittle

Millihertz X-ray variability during the 2019 outburst of black hole candidate Swift J1357.2 − 0933

Monthly Notices of the Royal Astronomical Society 522:3 (2023) 4598-4611

Authors:

Aru Beri, Vishal Gaur, Phil Charles, David RA Williams, Jahanvi, John A Paice, Poshak Gandhi, Diego Altamirano, Rob Fender, David A Green, David Titterington

Millihertz X-ray variability during the 2019 outburst of black hole candidate Swift~J1357.2$-$0933

(2023)

Authors:

Aru Beri, Vishal Gaur, Phil Charles, David RA Williams, Jahanvi, John A Paice, Poshak Gandhi, Diego Altamirano, Rob Fender, David A Green, David Titterington

The catalog-to-cosmology framework for weak lensing and galaxy clustering for LSST

Open Journal of Astrophysics Maynooth Academic Publishing 6 (2023)

Authors:

J Prat, J Zuntz, C Chang, T Tröster, E Pedersen, C García-García, E Phillips-Longley, J Sanchez, David Alonso, X Fang, E Gawiser, K Heitmann, M Ishak, M Jarvis, E Kovacs, P Larsen, Y-Y Mao, L Medina Varela, M Paterno, Sd Vitenti, Z Zhang

Abstract:

We present TXPipe, a modular, automated and reproducible pipeline for ingesting catalog data and performing all the calculations required to obtain quality-assured two-point measurements of lensing and clustering, and their covariances, with the metadata necessary for parameter estimation. The pipeline is developed within the Rubin Observatory Legacy Survey of Space and Time (LSST) Dark Energy Science Collaboration (DESC), and designed for cosmology analyses using LSST data. In this paper, we present the pipeline for the so-called 3x2pt analysis – a combination of three two-point functions that measure the auto- and cross-correlation between galaxy density and shapes. We perform the analysis both in real and harmonic space using TXPipe and other LSST-DESC tools. We validate the pipeline using Gaussian simulations and show that it accurately measures data vectors and recovers the input cosmology to the accuracy level required for the first year of LSST data under this simplified scenario. We also apply the pipeline to a realistic mock galaxy sample extracted from the CosmoDC2 simulation suite (Korytov et al. 2019). TXPipe establishes a baseline framework that can be built upon as the LSST survey proceeds. Furthermore, the pipeline is designed to be easily extended to science probes beyond the 3x2pt analysis.