Key Science Goals for the Next-Generation Event Horizon Telescope

Galaxies MDPI 11:3 (2023) 61

Authors:

Michael D Johnson, Kazunori Akiyama, Lindy Blackburn, Katherine L Bouman, Avery E Broderick, Vitor Cardoso, Rob P Fender, Christian M Fromm, Peter Galison, José L Gómez, Daryl Haggard, Matthew L Lister, Andrei P Lobanov, Sera Markoff, Ramesh Narayan, Priyamvada Natarajan, Tiffany Nichols, Dominic W Pesce, Ziri Younsi, Andrew Chael, Koushik Chatterjee, Ryan Chaves, Juliusz Doboszewski, Richard Dodson, Sheperd S Doeleman, Jamee Elder, Garret Fitzpatrick, Kari Haworth, Janice Houston, Sara Issaoun, Yuri Y Kovalev, Aviad Levis, Rocco Lico, Alexandru Marcoci, Niels CM Martens, Neil M Nagar, Aaron Oppenheimer, Daniel CM Palumbo, Angelo Ricarte, María J Rioja, Freek Roelofs, Ann C Thresher, Paul Tiede, Jonathan Weintroub, Maciek Wielgus

Analytical marginalization over photometric redshift uncertainties in cosmic shear analyses

Monthly Notices of the Royal Astronomical Society Oxford University Press 522:4 (2023) 5037-5048

Authors:

Jaime Ruiz-Zapatero, B Hadzhiyska, David Alonso, Pedro G Ferreira, Carlos García-García, Arrykrishna Mootoovaloo

Abstract:

As the statistical power of imaging surveys grows, it is crucial to account for all systematic uncertainties. This is normally done by constructing a model of these uncertainties and then marginalizing over the additional model parameters. The resulting high dimensionality of the total parameter spaces makes inferring the cosmological parameters significantly more costly using traditional Monte Carlo sampling methods. A particularly relevant example is the redshift distribution, p(⁠z ), of the source samples, which may require tens of parameters to describe fully. However, relatively tight priors can be usually placed on these parameters through calibration of the associated systematics. In this paper, we show, quantitatively, that a linearization of the theoretical prediction with respect to these calibrated systematic parameters allows us to analytically marginalize over these extra parameters, leading to a factor of ∼30 reduction in the time needed for parameter inference, while accurately recovering the same posterior distributions for the cosmological parameters that would be obtained through a full numerical marginalization over 160 p(⁠z ) parameters. We demonstrate that this is feasible not only with current data and current achievable calibration priors but also for future Stage-IV data sets.

The DEHVILS survey overview and initial data release: high-quality near-infrared Type Ia supernova light curves at low redshift

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 522:2 (2023) 2478-2494

Authors:

Erik R Peterson, David O Jones, Daniel Scolnic, Bruno O Sánchez, Aaron Do, Adam G Riess, Sam M Ward, Arianna Dwomoh, Thomas de Jaeger, Saurabh W Jha, Kaisey S Mandel, Justin DR Pierel, Brodie Popovic, Benjamin M Rose, David Rubin, Benjamin J Shappee, Stephen Thorp, John L Tonry, R Brent Tully, Maria Vincenzi

The Simons Observatory: Beam characterization for the Small Aperture Telescopes

(2023)

Authors:

Nadia Dachlythra, Adriaan J Duivenvoorden, Jon E Gudmundsson, Matthew Hasselfield, Gabriele Coppi, Alexandre E Adler, David Alonso, Susanna Azzoni, Grace E Chesmore, Giulio Fabbian, Ken Ganga, Remington G Gerras, Andrew H Jaffe, Bradley R Johnson, Brian Keating, Reijo Keskitalo, Theodore S Kisner, Nicoletta Krachmalnicoff, Marius Lungu, Frederick Matsuda, Sigurd Naess, Lyman Page, Roberto Puddu, Giuseppe Puglisi, Sara M Simon, Grant Teply, Tran Tsan, Edward J Wollack, Kevin Wolz, Zhilei Xu

The most luminous, merger-free AGNs show only marginal correlation with bar presence

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 522:1 (2023) 211-225

Authors:

Izzy L Garland, Matthew J Fahey, Brooke D Simmons, Rebecca J Smethurst, Chris J Lintott, Jesse Shanahan, Maddie S Silcock, Joshua Smith, William C Keel, Alison Coil, Tobias Géron, Sandor Kruk, Karen L Masters, David O’Ryan, Matthew R Thorne, Klaas Wiersema