The KMOS Redshift One Spectroscopic Survey (KROSS): the origin of disk turbulence in z~0.9 star-forming galaxies

arXiv

Authors:

HL Johnson, CM Harrison, AM Swinbank, AL Tiley, JP Stott, RG Bower, I Smail, AJ Bunker, D Sobral, OJ Turner, P Best, Martin Bureau, M Cirasuolo, Matthew Jarvis, G Magdis, RM Sharples, J Bland-Hawthorn, B Catinella, L Cortese, SM Croom, C Federrath, K Glazebrook, SM Sweet, JJ Bryant, IS Konstantopoulos

Abstract:

We analyse the velocity dispersion properties of 472 z~0.9 star-forming galaxies observed as part of the KMOS Redshift One Spectroscopic Survey (KROSS). The majority of this sample is rotationally dominated (83 +/- 5% with v_C/sigma_0 > 1) but also dynamically hot and highly turbulent. After correcting for beam smearing effects, the median intrinsic velocity dispersion for the final sample is sigma_0 = 43.2 +/- 0.8 km/s with a rotational velocity to dispersion ratio of v_C/sigma_0 = 2.6 +/- 0.1. To explore the relationship between velocity dispersion, stellar mass, star formation rate and redshift we combine KROSS with data from the SAMI survey (z~0.05) and an intermediate redshift MUSE sample (z~0.5). While there is, at most, a weak trend between velocity dispersion and stellar mass, at fixed mass there is a strong increase with redshift. At all redshifts, galaxies appear to follow the same weak trend of increasing velocity dispersion with star formation rate. Our results are consistent with an evolution of galaxy dynamics driven by disks that are more gas rich, and increasingly gravitationally unstable, as a function of increasing redshift. Finally, we test two analytic models that predict turbulence is driven by either gravitational instabilities or stellar feedback. Both provide an adequate description of the data, and further observations are required to rule out either model.

The Lepton charge asymmetry in the decay of $W$ bosons produced in $p\barp$ collisions at $\sqrts=$ 1.8-TeV

16th International Symposium on Lepton and Photon Interactions

Authors:

F Abe, others

The Single-Phase ProtoDUNE Technical Design Report

Authors:

B Abi, others

The Two jet differential cross-section at CDF

16th International Symposium on Lepton and Photon Interactions

Authors:

F Abe, others

The impact of relativistic effects on cosmological parameter estimation

Phys. Rev. D 97 023537-023537

Authors:

CS Lorenz, D Alonso, PG Ferreira

Abstract:

Future surveys will access large volumes of space and hence very long wavelength fluctuations of the matter density and gravitational field. It has been argued that the set of secondary effects that affect the galaxy distribution, relativistic in nature, will bring new, complementary cosmological constraints. We study this claim in detail by focusing on a subset of wide-area future surveys: Stage-4 cosmic microwave background experiments and photometric redshift surveys. In particular, we look at the magnification lensing contribution to galaxy clustering and general relativistic corrections to all observables. We quantify the amount of information encoded in these effects in terms of the tightening of the final cosmological constraints as well as the potential bias in inferred parameters associated with neglecting them. We do so for a wide range of cosmological parameters, covering neutrino masses, standard dark-energy parametrizations and scalar-tensor gravity theories. Our results show that, while the effect of lensing magnification to number counts does not contain a significant amount of information when galaxy clustering is combined with cosmic shear measurements, this contribution does play a significant role in biasing estimates on a host of parameter families if unaccounted for. Since the amplitude of the magnification term is controlled by the slope of the source number counts with apparent magnitude, $s(z)$, we also estimate the accuracy to which this quantity must be known to avoid systematic parameter biases, finding that future surveys will need to determine $s(z)$ to the $\sim$5-10\% level. On the contrary, large-scale general-relativistic corrections are irrelevant both in terms of information content and parameter bias for most cosmological parameters, but significant for the level of primordial non-Gaussianity.