A Search for new gauge bosons in $\barpp$ collisions at $\sqrts=$ 1.8-TeV in the dielectron decay mode

16th International Symposium on Lepton and Photon Interactions

Authors:

F Abe, others

A Spitzer survey of Deep Drilling Fields to be targeted by the Vera C. Rubin Observatory Legacy Survey of Space and Time

Authors:

M Lacy, Ja Surace, D Farrah, K Nyland, J Afonso, Wn Brandt, Dl Clements, Cdp Lagos, C Maraston, J Pforr, A Sajina, M Sako, M Vaccari, G Wilson, Dr Ballantyne, Wa Barkhouse, R Brunner, R Cane, Te Clarke, M Cooper, A Cooray, G Covone, C D'Andrea, Ae Evrard, Hc Ferguson, J Frieman, V Gonzalez-Perez, R Gupta, E Hatziminaoglou, J Huang, P Jagannathan, Mj Jarvis, Km Jones, A Kimball, C Lidman, L Lubin, L Marchetti, P Martini, Rg McMahon, S Mei, H Messias, Ej Murphy, Ja Newman, R Nichol, Rp Norris, S Oliver, I Perez-Fournon, Wm Peters, M Pierre, E Polisensky

Abstract:

The Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) will observe several Deep Drilling Fields (DDFs) to a greater depth and with a more rapid cadence than the main survey. In this paper, we describe the ``DeepDrill'' survey, which used the Spitzer Space Telescope Infrared Array Camera (IRAC) to observe three of the four currently defined DDFs in two bands, centered on 3.6 $\mu$m and 4.5 $\mu$m. These observations expand the area which was covered by an earlier set of observations in these three fields by the Spitzer Extragalactic Representative Volume Survey (SERVS). The combined DeepDrill and SERVS data cover the footprints of the LSST DDFs in the Extended Chandra Deep Field-South field (ECDFS), the ELAIS-S1 field (ES1), and the XMM Large-Scale Structure Survey field (XMM-LSS). The observations reach an approximate $5\sigma$ point-source depth of 2 $\mu$Jy (corresponding to an AB magnitude of 23.1; sufficient to detect a 10$^{11} M_{\odot}$ galaxy out to $z\approx 5$) in each of the two bands over a total area of $\approx 29\,$deg$^2$. The dual-band catalogues contain a total of 2.35 million sources. In this paper we describe the observations and data products from the survey, and an overview of the properties of galaxies in the survey. We compare the source counts to predictions from the SHARK semi-analytic model of galaxy formation. We also identify a population of sources with extremely red ([3.6]$-$[4.5] $>1.2$) colours which we show mostly consists of highly-obscured active galactic nuclei.

A Study of events with the highest total transverse energy in CDF

16th International Symposium on Lepton and Photon Interactions

Authors:

F Abe, others

A minimal power-spectrum-based moment expansion for CMB B-mode searches

Journal of Cosmology and Astroparticle Physics IOP Publishing

Authors:

S Azzoni, Mh Abitbol, D Alonso, A Gough, N Katayama, T Matsumura

Abstract:

The characterization and modeling of polarized foregrounds has become a critical issue in the quest for primordial $B$-modes. A typical method to proceed is to factorize and parametrize the spectral properties of foregrounds and their scale dependence (i.e. assuming that foreground spectra are well described everywhere by their sky average). Since in reality foreground properties vary across the Galaxy, this assumption leads to inaccuracies in the model that manifest themselves as biases in the final cosmological parameters (in this case the tensor-to-scalar ratio $r$). This is particularly relevant for surveys over large fractions of the sky, such as the Simons Observatory (SO), where the spectra should be modeled over a distribution of parameter values. Here we propose a method based on the existing ``moment expansion'' approach to address this issue in a power-spectrum-based analysis that is directly applicable in ground-based multi-frequency data. Additionally, the method uses only a small set of parameters with simple physical interpretation, minimizing the impact of foreground uncertainties on the final $B$-mode constraints. We validate the method using SO-like simulated observations, recovering an unbiased estimate of the tensor-to-scalar ratio $r$ with standard deviation $\sigma(r)\simeq0.003$, compatible with official forecasts. When applying the method to the public BICEP2/Keck data, we find an upper bound $r<0.06$ ($95\%\,{\rm C.L.}$), compatible with the result found by BICEP2/Keck when parametrizing spectral index variations through a scale-independent frequency decorrelation parameter. We also discuss the formal similarities between the power spectrum-based moment expansion and methods used in the analysis of CMB lensing.

A persistent ultraviolet outflow from the accretion disc in a transient neutron star binary

Authors:

Noel Castro Segura, Christian Knigge, Knox Long, Diego Altamirano, Montserrat Armas Padilla, Charles Bailyn, David Buckley, Douglas Buisson, Jorge Casares, Phil Charles, Jorge Combi, Virginia A Cúneo, Nathalie Degenaar, Santiago del Palacio, Maria Diaz Trigo, Rob Fender, Poshak Gandhi, Claudia Gutíerrez, Juan Hernández Santisteban, Felipe Jiménez Ibarra, James Matthews, Mariano Mendez, Matthew Middleton, Teo Muñoz Darias, Mehtap Özbey Arabaci, Mayukh Pahari, Lauren Rhodes, Thomas Russell, Simone Scaringi, Jakob van den Eijden, Georgios Vasilopolulos, Federico Vincentelli, Phil Wiseman