The search for living worlds and the connection to our cosmic origins
Experimental Astronomy Springer 54:2-3 (2021) 1275-1306
Abstract:
One of the most exciting scientific challenges is to detect Earth-like planets in the habitable zones of other stars in the galaxy and search for evidence of life. During the past 20 years the detection of exoplanets, orbiting stars beyond our own, has moved from science fiction to science fact. From the first handful of gas giants, found through radial velocity studies, detection techniques have increased in sensitivity, finding smaller planets and diverse multi-planet systems. Through enhanced ground-based spectroscopic observations, transit detection techniques and the enormous productivity of the Kepler space mission, the number of confirmed planets has increased to more than 2000. Several space missions, including TESS (NASA), now operational, and PLATO (ESA), will extend the parameter space for exoplanet discovery towards the regime of rocky Earth-like planets and take the census of such bodies in the neighbourhood of the Solar System. The ability to observe and characterise dozens of potentially rocky Earth-like planets now lies within the realm of possibility due to rapid advances in key space and imaging technologies and active studies of potential missions have been underway for a number of years. The latest of these is the Large UV Optical IR space telescope (LUVOIR), one of four flagship mission studies commissioned by NASA in support of the 2020 US Decadal Survey. LUVOIR, if selected, will be of interest to a wide scientific community and will be the only telescope capable of searching for and characterizing a sufficient number of exo-Earths to provide a meaningful answer to the question “Are we alone?”. This contribution is a White Paper that has been submitted in response to the ESA Voyage 2050 Call.The growth of density perturbations in the last ∼10 billion years from tomographic large-scale structure data
Journal of Cosmology and Astroparticle Physics IOP Publishing 10:2021 (2021) 030
Abstract:
In order to investigate the origin of the ongoing tension between the amplitude of matter fluctuations measured by weak lensing experiments at low redshifts and the value inferred from the cosmic microwave background anisotropies, we reconstruct the evolution of this amplitude from z ∼ 2 using existing large-scale structure data. To do so, we decouple the linear growth of density inhomogeneities from the background expansion, and constrain its redshift dependence making use of a combination of 6 different data sets, including cosmic shear, galaxy clustering and CMB lensing. We analyze these data under a consistent harmonic-space angular power spectrum-based pipeline. We show that current data constrain the amplitude of fluctuations mostly in the range 0.2 < z < 0.7, where it is lower than predicted by Planck. This difference is mostly driven by current cosmic shear data, although the growth histories reconstructed from different data combinations are consistent with each other, and we find no evidence of systematic deviations in any particular experiment. In spite of the tension with Planck, the data are well-described by the ΛCDM model, albeit with a lower value of S8 ≡ σ8(Ωm/0.3)0.5 . As part of our analysis, we find constraints on this parameter of S8 = 0.7781 ± 0.0094 (68% confidence level), reaching almost percent-level errors comparable with CMB measurements, and 3.4σ away from the value found by Planck.Are Delayed Radio Flares Common in Tidal Disruption Events? The Case of the TDE iPTF 16fnl
The Astrophysical Journal Letters American Astronomical Society 920:1 (2021) l5
MIGHTEE: total intensity radio continuum imaging and the COSMOS / XMM-LSS Early Science fields
ArXiv 2110.00347 (2021)
Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100)
Quantum Science and Technology IOP Publishing 6:4 (2021) 044003