Measuring the baryonic Tully-Fisher relation below the detection threshold

Monthly Notices of the Royal Astronomical Society Oxford University Press 508:2 (2021) 1897-1907

Authors:

Hengxing Pan, Matt J Jarvis, Anastasia A Ponomareva, Mario G Santos, James R Allison, Natasha Maddox, Bradley S Frank

Abstract:

We present a novel 2D flux density model for observed H i emission lines combined with a Bayesian stacking technique to measure the baryonic Tully-Fisher relation below the nominal detection threshold. We simulate a galaxy catalogue, which includes H i lines described with either Gaussian or busy function profiles, and H i data cubes with a range of noise and survey areas similar to the MeerKAT International Giga-Hertz Tiered Extragalactic Exploration (MIGHTEE) survey. With prior knowledge of redshifts, stellar masses, and inclinations of spiral galaxies, we find that our model can reconstruct the input baryonic Tully-Fisher parameters (slope and zero-point) most accurately in a relatively broad redshift range from the local Universe to z = 0.3 for all the considered levels of noise and survey areas and up to z = 0.55 for a nominal noise of 90 μJy/channel over 5 deg2. Our model can also determine the MHI - M∗ relation for spiral galaxies beyond the local Universe and account for the detailed shape of the H I emission line, which is crucial for understanding the dynamics of spiral galaxies. Thus, we have developed a Bayesian stacking technique for measuring the baryonic Tully-Fisher relation for galaxies at low stellar and/or H I masses and/or those at high redshift, where the direct detection of H I requires prohibitive exposure times.

MIGHTEE-H I: the baryonic Tully–Fisher relation over the last billion years

Monthly Notices of the Royal Astronomical Society Oxford University Press 508:1 (2021) 1195-1205

Authors:

Anastasia A Ponomareva, Wanga Mulaudzi, Natasha Maddox, Bradley S Frank, Matt J Jarvis, Enrico M Di Teodoro, Marcin Glowacki, Renee C Kraan-Korteweg, Tom A Oosterloo, Elizabeth AK Adams, Hengxing Pan, Isabella Prandoni, Sambatriniaina HA Rajohnson, Francesco Sinigaglia, Nathan J Adams, Ian Heywood, Rebecca AA Bowler, Peter W Hatfield, Jordan D Collier, Srikrishna Sekhar

Abstract:

Using a sample of 67 galaxies from the MeerKAT International GigaHertz Tiered Extragalactic Exploration Survey Early Science data, we study the H i-based baryonic Tully-Fisher relation (bTFr), covering a period of ∼1 billion years (0 ≤ z ≤ 0.081). We consider the bTFr based on two different rotational velocity measures: The width of the global H i profile and Vout, measured as the outermost rotational velocity from the resolved H i rotation curves. Both relations exhibit very low intrinsic scatter orthogonal to the best-fitting relation (σ⊥ = 0.07 ± 0.01), comparable to the SPARC sample at z 0. The slopes of the relations are similar and consistent with the z 0 studies (3.66+0.35-0.29 for W50 and 3.47+0.37-0.30 for Vout). We find no evidence that the bTFr has evolved over the last billion years, and all galaxies in our sample are consistent with the same relation independent of redshift and the rotational velocity measure. Our results set-up a reference for all future studies of the H i-based bTFr as a function of redshift that will be conducted with the ongoing deep SKA pathfinders surveys.

Hefty enhancement of cosmological constraints from the DES Y1 data using a hybrid effective field theory approach to galaxy bias

Journal of Cosmology and Astroparticle Physics IOP Publishing 2021:09 (2021) 020-020

Authors:

Boryana Hadzhiyska, Carlos García-García, David Alonso, Andrina Nicola, Anže Slosar

Galaxy zoo: stronger bars facilitate quenching in star-forming galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 507:3 (2021) 4389-4408

Authors:

Tobias Géron, RJ Smethurst, Chris Lintott, Sandor Kruk, Karen L Masters, Brooke Simmons, David V Stark

Probing the progenitors of Type Ia supernovae using circumstellar material interaction signatures

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 507:3 (2021) 4367-4388

Authors:

Peter Clark, Kate Maguire, Mattia Bulla, Lluís Galbany, Mark Sullivan, Joseph P Anderson, Stephen J Smartt