Accretion and Outflow in V404 Cyg

(2019)

Authors:

J Casares, T Muñoz-Darias, D Mata Sanchez, PA Charles, MAP Torres, M Armas Padilla, RP Fender, J Garcia-Rojas

Hard-state accretion disk winds from black holes: the revealing case of MAXI J1820+070

Astrophysical Journal Letters IOP Science 879:1 (2019) L4

Authors:

T Munoz-Darias, F Jimenez-Ibarra, G Panizo-Espinar, J Casares, D Mata Sanchez, G Ponti, Rp Fender, Dah Buckley, P Garnavich, Map Torres, M Armas Padilla, Pa Charles, Jm Corral-Santana, Jje Kajava, Ej Kotze, C Littlefield, J Sanchez-Sierras, D Steeghs, J Thomas

Abstract:

We report on a detailed optical spectroscopic follow-up of the black hole (BH) transient MAXI J1820+070 (ASASSN-18ey). The observations cover the main part of the X-ray binary outburst, when the source alternated between hard and soft states following the classical pattern widely seen in other systems. We focus the analysis on the He i emission lines at 5876 and 6678 as well as on Hα. We detect clear accretion disk wind features (P-Cyg profiles and broad emission line wings) in the hard state, both during outburst rise and decay. These are not witnessed during the several months long soft state. However, our data suggest that the visibility of the outflow might be significantly affected by the ionization state of the accretion disk. The terminal velocity of the wind is above ∼1200 km s , which is similar to outflow velocities derived from (hard-state) optical winds and (soft-state) X-ray winds in other systems. The wind signatures, in particular the P-Cyg profiles, are very shallow, and their detection has only been possible thanks to a combination of source brightness and intense monitoring at very high signal-to-noise. This study indicates that cold, optical winds are most likely a common feature of BH accretion, and therefore, that wind-like outflows are a general mechanism of mass and angular momentum removal operating throughout the entire X-ray binary outburst. -1

Disconnected pseudo-$C_\ell$ covariances for projected large-scale structure data

(2019)

Authors:

Carlos García-García, David Alonso, Emilio Bellini

ALMA observations of A0620-00: fresh clues on the nature of quiescent black hole X-ray binary jets

Monthly Notices of the Royal Astronomical Society Oxford University Press 488:1 (2019) 191-197

Authors:

Elena Gallo, Richard Teague, Richard M Plotkin, James CA Miller-Jones, David M Russell, Tolga Dincer, Charles Bailyn, Thomas J Maccarone, Sera Markoff, Rob P Fender

Abstract:

We report on Atacama Large Millimeter Array (ALMA) continuum observations of the black hole X-ray binary A0620–00 at an X-ray luminosity nine orders of magnitude sub-Eddington. The system was significantly detected at 98 GHz (at 44 ± 7 μJy) and only marginally at 233 GHz (20 ± 8 μJy), about 40 d later. These results suggest either an optically thin sub-mm synchrotron spectrum, or highly variable sub-mm jet emission on month time-scales. Although the latter appears more likely, we note that, at the time of the ALMA observations, A0620–00 was in a somewhat less active optical-IR state than during all published multiwavelength campaigns when a flat-spectrum, partially self-absorbed jet has been suggested to extend from the radio to the mid-IR regime. Either interpretation is viable in the context of an internal shock model, where the jet’s spectral shape and variability are set by the power density spectrum of the shells’ Lorentz factor fluctuations. While strictly simultaneous radio–mm-IR observations are necessary to draw definitive conclusions for A0620–00, the data presented here, in combination with recent radio and sub-mm results from higher luminosity systems, demonstrate that jets from black hole X-ray binaries exhibit a high level of variability – either in flux density or intrinsic spectral shape, or both – across a wide spectrum of Eddington ratios. This is not in contrast with expectations from an internal shock model, where lower jet power systems can be expected to exhibit larger fractional variability owing to an overall decrease in synchrotron absorption.

Search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1

Astronomy and Astrophysics EDP Sciences 626 (2019) A117

Authors:

E Kankare, M Huber, SJ Smartt, K Chambers, KW Smith, O McBrien, T-W Chen, H Flewelling, T Lowe, E Magnier, A Schultz, C Waters, RJ Wainscoat, M Willman, D Wright, D Young, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, C Alispach, D Altmann, K Andeen, T Anderson, I Ansseau, G Anton, C Argüelles, J Auffenberg, S Axani, P Backes, H Bagherpour, X Bai, A Barbano, SW Barwick, V Baum, R Bay, JJ Beatty, K-H Becker, JB Tjus, S Benzvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, C Bohm

Abstract:

In order to identify the sources of the observed diffuse high-energy neutrino flux, it is crucial to discover their electromagnetic counterparts. To increase the sensitivity of detecting counterparts of transient or variable sources by telescopes with a limited field of view, IceCube began releasing alerts for single high-energy (Eν >  60 TeV) neutrino detections with sky localisation regions of order 1° radius in 2016. We used Pan-STARRS1 to follow-up five of these alerts during 2016–2017 to search for any optical transients that may be related to the neutrinos. Typically 10–20 faint (miP1 ≲ 22.5 mag) extragalactic transients are found within the Pan-STARRS1 footprints and are generally consistent with being unrelated field supernovae (SNe) and AGN. We looked for unusual properties of the detected transients, such as temporal coincidence of explosion epoch with the IceCube timestamp, or other peculiar light curve and physical properties. We found only one transient that had properties worthy of a specific follow-up. In the Pan-STARRS1 imaging for IceCube-160427A (probability to be of astrophysical origin of ∼50%), we found a SN PS16cgx, located at 10.0′ from the nominal IceCube direction. Spectroscopic observations of PS16cgx showed that it was an H-poor SN at redshift z = 0.2895 ± 0.0001. The spectra and light curve resemble some high-energy Type Ic SNe, raising the possibility of a jet driven SN with an explosion epoch temporally coincident with the neutrino detection. However, distinguishing Type Ia and Type Ic SNe at this redshift is notoriously difficult. Based on all available data we conclude that the transient is more likely to be a Type Ia with relatively weak Si II absorption and a fairly normal rest-frame r-band light curve. If, as predicted, there is no high-energy neutrino emission from Type Ia SNe, then PS16cgx must be a random coincidence, and unrelated to the IceCube-160427A. We find no other plausible optical transient for any of the five IceCube events observed down to a 5σ limiting magnitude of miP1 ≈ 22 mag, between 1 day and 25 days after detection.