Tomographic measurement of the intergalactic gas pressure through galaxy–tSZ cross-correlations

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 491:4 (2020) 5464-5480

Authors:

Nick Koukoufilippas, David Alonso, Maciej Bilicki, John A Peacock

Abstract:

ABSTRACT We cross-correlate maps of the thermal Sunyaev–Zeldovich (tSZ) Compton-y parameter published by Planck with the projected distribution of galaxies in a set of low-redshift tomographic bins. We use the nearly full-sky 2MASS Photometric Redshift and WISE × SuperCOSMOS public catalogues, covering the redshift range z ≲ 0.4. Our measurements allow us to place constraints on the redshift dependence of the mass–observable relation for tSZ cluster count analyses in terms of the so-called hydrostatic mass bias parameter $1-b_{\scriptscriptstyle \rm H}$. These results can also be interpreted as measurements of the bias-weighted average gas pressure 〈bPe〉 as a function of redshift, a quantity that can be related to the thermodynamics of gas inside haloes and used to constrain energy injection processes. We measure $1-b_{\scriptscriptstyle \rm H}$ with $\sim \!13{{\ \rm per\ cent}}$ precision in six equispaced redshift bins, and find no evidence for a redshift-dependent mass bias parameter, in agreement with previous analyses. Our mean value of $1-b_{\scriptscriptstyle \rm H}= 0.59\pm 0.03$ is also in good agreement with the one estimated by the joint analysis of Planck cluster counts and cosmic microwave background anisotropies. Our measurements of 〈bPe〉, at the level of $\sim \!10{{\ \rm per\ cent}}$ in each bin, are the most stringent constraints on the redshift dependence of this parameter to date, and agree well both with previous measurements and with theoretical expectations from shock-heating models.

A detailed non-LTE analysis of LB-1: Revised parameters and surface abundances

Astronomy & Astrophysics EDP Sciences 634 (2020) l7

Authors:

S Simón-Díaz, J Maíz Apellániz, DJ Lennon, JI González Hernández, C Allende Prieto, N Castro, A de Burgos, PL Dufton, A Herrero, B Toledo-Padrón, SJ Smartt

Z boson production in Pb+Pb collisions at √sNN = 5.02 TeV measured by the ATLAS experiment

Physics Letters B Elsevier 802 (2020)

Authors:

G Aad, B Abbott, DC Abbott, A Abed Abud, K Abeling, DK Abhayasinghe, SH Abidi, OS AbouZeid, NL Abraham, H Abramowicz, H Abreu, Y Abulaiti, BS Acharya, B Achkar, S Adachi, L Adam, C Adam Bourdarios, L Adamczyk, L Adamek, J Adelman, M Adersberger, A Adiguzel, S Adorni, T Adye, AA Affolder, Y Afik, C Agapopoulou, MN Agaras, A Aggarwal, C Agheorghiesei, JA Aguilar-Saavedra, F Ahmadov, WS Ahmed, X Ai, G Aielli, S Akatsuka, TPA Åkesson, E Akilli, AV Akimov, K Al Khoury, GL Alberghi, J Albert, MJ Alconada Verzini, S Alderweireldt, M Aleksa, IN Aleksandrov, C Alexa, D Alexandre, Richard Nickerson, Et al.

Abstract:

The production yield of Z bosons is measured in the electron and muon decay channels in Pb+Pb collisions at √sNN = 5.02 TeV with the ATLAS detector. Data from the 2015 LHC run corresponding to an integrated luminosity of 0.49 nb−1 are used for the analysis. The Z boson yield, normalised by the total number of minimum-bias events and the mean nuclear thickness function, is measured as a function of dilepton rapidity and event centrality. The measurements in Pb+Pb collisions are compared with similar measurements made in proton–proton collisions at the same centre-of-mass energy. The nuclear modification factor is found to be consistent with unity for all centrality intervals. The results are compared with theoretical predictions obtained at next-to-leading order using nucleon and nuclear parton distribution functions. The normalised Z boson yields in Pb+Pb collisions lie 1–3σ above the predictions. The nuclear modification factor measured as a function of rapidity agrees with unity and is consistent with a next-to-leading-order QCD calculation including the isospin effect

The lowest of the low: discovery of SN 2019gsc and the nature of faint Iax supernovae

(2020)

Authors:

Shubham Srivastav, Stephen J Smartt, Giorgos Leloudas, Mark E Huber, Ken Chambers, Daniele B Malesani, Jens Hjorth, James H Gillanders, A Schultz, Stuart A Sim, Katie Auchettl, Johan PU Fynbo, Christa Gall, Owen R McBrien, Armin Rest, Ken W Smith, Radoslaw Wojtak, David R Young

Updated Design of the CMB Polarization Experiment Satellite LiteBIRD

JOURNAL OF LOW TEMPERATURE PHYSICS Springer Science and Business Media LLC 199:3-4 (2020) 1107-1117

Authors:

H Sugai, Par Ade, Y Akiba, D Alonso, K Arnold, J Aumont, J Austermann, C Baccigalupi, Aj Banday, R Banerji, Rb Barreiro, S Basak, J Beall, S Beckman, M Bersanelli, J Borrill, F Boulanger, Ml Brown, M Bucher, A Buzzelli, E Calabrese, Fj Casas, A Challinor, J-F Cliche, F Columbro

Abstract:

© 2020, The Author(s). Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite cosmic microwave background (CMB) polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA’s H3 rocket. It will accommodate more than 4000 TESs in focal planes of reflective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the CMB by the primordial gravitational waves predicted in cosmic inflation. The total wide frequency coverage between 34 and 448 GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxy’s foreground emission by using spectral differences among CMB and foreground signals. Telescopes are cooled down to 5 K for suppressing thermal noise and contain polarization modulators with transmissive half-wave plates at individual apertures for separating sky polarization signals from artificial polarization and for mitigating from instrumental 1/f noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second Sun–Earth Lagrangian point, L2, are planned for 3 years. An international collaboration between Japan, the USA, Canada, and Europe is sharing various roles. In May 2019, the Institute of Space and Astronautical Science, JAXA, selected LiteBIRD as the strategic large mission No. 2.