A precise measurement of the $W$-boson mass with the Collider Detector at Fermilab

(2013)

Authors:

T Aaltonen, S Amerio, D Amidei, A Anastassov, A Annovi, J Antos, G Apollinari, JA Appel, T Arisawa, A Artikov, J Asaadi, W Ashmanskas, B Auerbach, A Aurisano, F Azfar, W Badgett, T Bae, A Barbaro-Galtieri, VE Barnes, BA Barnett, J Guimaraes da Costa, P Barria, P Bartos, M Bauce, F Bedeschi, D Beecher, S Behari, G Bellettini, J Bellinger, D Benjamin, A Beretvas, A Bhatti, I Bizjak, KR Bland, B Blumenfeld, A Bocci, A Bodek, D Bortoletto, J Boudreau, A Boveia, L Brigliadori, C Bromberg, E Brucken, J Budagov, HS Budd, K Burkett, G Busetto, P Bussey, P Butti, A Buzatu, A Calamba, S Camarda, M Campanelli, F Canelli, B Carls, D Carlsmith, R Carosi, S Carrillo, B Casal, M Casarsa, A Castro, P Catastini, D Cauz, V Cavaliere, M Cavalli-Sforza, A Cerri, L Cerrito, YC Chen, M Chertok, G Chiarelli, G Chlachidze, K Cho, D Chokheli, A Clark, C Clarke, ME Convery, J Conway, M Corbo, M Cordelli, CA Cox, DJ Cox, M Cremonesi, D Cruz, J Cuevas, R Culbertson, N d'Ascenzo, M Datta, P de Barbaro, L Demortier, M Deninno, M D'Errico, F Devoto, A Di Canto, B Di Ruzza, JR Dittmann, S Donati, M D'Onofrio, M Dorigo, A Driutti, K Ebina, R Edgar, A Elagin, R Erbacher, S Errede, B Esham, R Eusebi, S Farrington, JP Fernández Ramos, R Field, G Flanagan, R Forrest, M Franklin, JC Freeman, H Frisch, Y Funakoshi, C Galloni, AF Garfinkel, P Garosi, H Gerberich, E Gerchtein, S Giagu, V Giakoumopoulou, K Gibson, CM Ginsburg, N Giokaris, P Giromini, G Giurgiu, V Glagolev, D Glenzinski, M Gold, D Goldin, A Golossanov, G Gomez, G Gomez-Ceballos, M Goncharov, O González López, I Gorelov, AT Goshaw, K Goulianos, E Gramellini, S Grinstein, C Grosso-Pilcher, RC Group, SR Hahn, JY Han, F Happacher, K Hara, M Hare, RF Harr, T Harrington-Taber, K Hatakeyama, C Hays, J Heinrich, M Herndon, A Hocker, Z Hong, W Hopkins, S Hou, RE Hughes, U Husemann, M Hussein, J Huston, G Introzzi, M Iori, A Ivanov, E James, D Jang, B Jayatilaka, EJ Jeon, S Jindariani, M Jones, KK Joo, SY Jun, TR Junk, M Kambeitz, T Kamon, PE Karchin, A Kasmi, Y Kato, W Ketchum, J Keung, B Kilminster, DH Kim, HS Kim, JE Kim, MJ Kim, SH Kim, SB Kim, YJ Kim, YK Kim, N Kimura, M Kirby, K Knoepfel, K Kondo, DJ Kong, J Konigsberg, AV Kotwal, M Kreps, J Kroll, M Kruse, T Kuhr, M Kurata, AT Laasanen, S Lammel, M Lancaster, K Lannon, G Latino, HS Lee, JS Lee, S Leo, S Leone, JD Lewis, A Limosani, E Lipeles, A Lister, H Liu, Q Liu, T Liu, S Lockwitz, A Loginov, D Lucchesi, A Lucà, J Lueck, P Lujan, P Lukens, G Lungu, J Lys, R Lysak, R Madrak, P Maestro, S Malik, G Manca, A Manousakis-Katsikakis, L Marchese, F Margaroli, P Marino, M Martínez, K Matera, ME Mattson, A Mazzacane, P Mazzanti, R McNulty, A Mehta, P Mehtala, C Mesropian, T Miao, D Mietlicki, A Mitra, H Miyake, S Moed, N Moggi, CS Moon, R Moore, MJ Morello, A Mukherjee, Th Muller, P Murat, M Mussini, J Nachtman, Y Nagai, J Naganoma, I Nakano, A Napier, J Nett, C Neu, T Nigmanov, L Nodulman, SY Noh, O Norniella, E Nurse, L Oakes, SH Oh, YD Oh, I Oksuzian, T Okusawa, R Orava, L Ortolan, C Pagliarone, E Palencia, P Palni, V Papadimitriou, W Parker, G Pauletta, M Paulini, C Paus, TJ Phillips, G Piacentino, E Pianori, J Pilot, K Pitts, C Plager, L Pondrom, S Poprocki, K Potamianos, A Pranko, F Prokoshin, F Ptohos, G Punzi, N Ranjan, I Redondo Fernández, P Renton, M Rescigno, T Riddick, F Rimondi, L Ristori, A Robson, T Rodriguez, S Rolli, M Ronzani, R Roser, JL Rosner, F Ruffini, A Ruiz, J Russ, V Rusu, WK Sakumoto, Y Sakurai, L Santi, K Sato, V Saveliev, A Savoy-Navarro, P Schlabach, EE Schmidt, T Schwarz, L Scodellaro, F Scuri, S Seidel, Y Seiya, A Semenov, F Sforza, SZ Shalhout, T Shears, R Shekhar, PF Shepard, M Shimojima, M Shochet, A Simonenko, K Sliwa, JR Smith, FD Snider, H Song, V Sorin, R St Denis, M Stancari, O Stelzer-Chilton, D Stentz, J Strologas, Y Sudo, A Sukhanov, S Sun, I Suslov, K Takemasa, Y Takeuchi, J Tang, M Tecchio, I Shreyber-Tecker, PK Teng, J Thom, E Thomson, V Thukral, D Toback, S Tokar, K Tollefson, T Tomura, D Tonelli, S Torre, D Torretta, P Totaro, M Trovato, F Ukegawa, S Uozumi, F Vázquez, G Velev, C Vellidis, C Vernieri, M Vidal, R Vilar, J Vizán, M Vogel, G Volpi, P Wagner, R Wallny, SM Wang, D Waters, WC Wester, D Whiteson, AB Wicklund, S Wilbur, HH Williams, JS Wilson, P Wilson, BL Winer, P Wittich, S Wolbers, H Wolfe, T Wright, X Wu, Z Wu, K Yamamoto, D Yamato, T Yang, UK Yang, YC Yang, W-M Yao, GP Yeh, K Yi, J Yoh, K Yorita, T Yoshida, GB Yu, I Yu, AM Zanetti, Y Zeng, C Zhou, S Zucchelli

H-ATLAS: Estimating redshifts of herschel sources from sub-mm fluxes

Monthly Notices of the Royal Astronomical Society 435:4 (2013) 2753-2763

Authors:

EA Pearson, S Eales, L Dunne, J Gonzalez-Nuevo, S Maddox, JE Aguirre, M Baes, AJ Baker, N Bourne, CM Bradford, CJR Clark, A Cooray, A Dariush, G De Zotti, S Dye, D Frayer, HL Gomez, AI Harris, R Hopwood, E Ibar, RJ Ivison, M Jarvis, M Krips, A Lapi, RE Lupu, MJ Michałowski, M Rosenman, D Scott, E Valiante, I Valtchanov, P van der Werf, JD Vieira

Abstract:

Upon its completion, the Herschel Astrophysics Terahertz Large Area Survey (H-ATLAS) will be the largest sub-millimetre survey to date, detecting close to half-a-million sources. It will only be possible to measure spectroscopic redshifts for a small fraction of these sources. However, if the rest-frame spectral energy distribution (SED) of a typical H-ATLAS source is known, this SED and the observed Herschel fluxes can be used to estimate the redshifts of the H-ATLAS sources without spectroscopic redshifts. In this paper, we use a sub-set of 40 H-ATLAS sources with previously measured redshifts in the range 0.5 < z < 4.2 to derive a suitable average template for high-redshift H-ATLAS sources. We find that a template with two dust components (Tc= 23.9K, Th= 46.9K and ratio of mass of cold dust to mass of warm dust of 30.1) provides a good fit to the rest-frame fluxes of the sources in our calibration sample. We use a jackknife technique to estimate the accuracy of the redshifts estimated with this template, finding a root mean square of Δz/(1 + z) = 0.26. For sources for which there is prior information that they lie at z > 1, we estimate that the rms of Δz/(1 + z) = 0.12. We have used this template to estimate the redshift distribution for the sources detected in the H-ATLAS equatorial fields, finding a bimodal distribution with a mean redshift of 1.2, 1.9 and 2.5 for 250, 350 and 500 μm selected sources, respectively. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Hydrogen-Poor Superluminous Supernovae and Long-Duration Gamma-Ray Bursts Have Similar Host Galaxies

(2013)

Authors:

R Lunnan, R Chornock, E Berger, T Laskar, W Fong, A Rest, NE Sanders, PM Challis, MR Drout, RJ Foley, ME Huber, RP Kirshner, C Leibler, GH Marion, M McCrum, D Milisavljevic, G Narayan, D Scolnic, SJ Smartt, KW Smith, AM Soderberg, JL Tonry, WS Burgett, KC Chambers, H Flewelling, KW Hodapp, N Kaiser, EA Magnier, PA Price, RJ Wainscoat

Discovery of a new kind of explosive X-ray transient near M86

(2013)

Authors:

PG Jonker, A Glennie, M Heida, T Maccarone, S Hodgkin, G Nelemans, JCA Miller-Jones, MAP Torres, R Fender

Measuring the conceptual understandings of citizen scientists participating in zooniverse projects: A first approach

Astronomy Education Review 12:1 (2013)

Authors:

EE Prather, S Cormier, CS Wallace, C Lintott, M Jordan Raddick, A Smith

Abstract:

The Zooniverse projects turn everyday people into "citizen scientists" who work online with real data to assist scientists in conducting research on a variety of topics related to galaxies, exoplanets, lunar craters, and solar flares, among others. This paper describes our initial study to assess the conceptual knowledge and reasoning abilities of citizen scientists participating in two Zooniverse projects: Galaxy Zoo and Moon Zoo. In order to measure their knowledge and abilities, we developed two new assessment instruments, the Zooniverse Astronomical Concept Survey (ZACS) and the Lunar Cratering Concept Inventory (LCCI). We found that citizen scientists with the highest level of participation in the Galaxy Zoo and Moon Zoo projects also have the highest average correct scores on the items of the ZACS and LCCI. However, the limited nature of the data provided by Zooniverse participants prevents us from being able to evaluate the statistical significance of this finding, and we make no claim about whether there is a causal relationship between one's participation in Galaxy Zoo or Moon Zoo and one's level of conceptual understanding or reasoning ability on the astrophysical topics assessed by the ZACS or the LCCI. Overall, both the ZACS and the LCCI provide Zooniverse's citizen scientists with items that offer a wide range of difficulties. Using the data from the small subset of participants who responded to all items of the ZACS, we found evidence suggesting the ZACS is a reliable instrument (α=0.78), although twenty-one of its forty items appear to have point biserials less than 0.3. The work reported here provides significant insight into the strengths and limitations of various methods for administering assessments to citizen scientists. Researchers who wish to study the knowledge and abilities of citizen scientists in the future should be sure to design their research methods to avoid the pitfalls identified by our initial findings. © 2013 The American Astronomical Society.