Active galactic nucleus torus models and the puzzling infrared spectrum of IRAS F10214+4724
Monthly Notices of the Royal Astronomical Society 436:2 (2013) 1873-1882
Abstract:
We present a revised model for the infrared emission of the hyperluminous infrared galaxy IRAS F10214+4724 which takes into account recent photometric data from Spitzer and Herschel that sample the peak of its spectral energy distribution. We first present and discuss a grid of smooth active galactic nucleus (AGN) torus models computed with the method of Efstathiou & Rowan-Robinson and demonstrate that the combination of these models and the starburst models of Efstathiou and coworkers, while able to give an excellent fit to the average spectrum of Seyfert 2s and spectra of individual type 2 quasars measured by Spitzer, fails to match the spectral energy distribution of IRAS F10214+4724. This is mainly due to the fact that the νSν distribution of the galaxy falls very steeply with increasing frequency (a characteristic that is usually indicative of heavy absorption by dust) but shows a silicate feature in emission. Such emission features are not expected in sources with optical/near-infrared type 2 AGN spectral signatures. The Herschel data show that there is more power emitted in the rest-frame 20-50 μm wavelength range compared with the model presented by Efstathiou which assumes three components of emission: an edge-on torus, clouds (at a temperature of 610 and 200 K) that are associated with the narrow-line region (NLR) and a highly obscured starburst that dominates in the submillimetre. We present a revised version of that model that assumes an additional component of emission which we associate with NLR clouds at a temperature of 100 K. The 100 K dust component could also be explained by a highly obscured hot starburst. The model suggests that the NLR of IRAS F10214+4724 has an unusually high covering factor (≥17 per cent) or more likely the magnification of the emission from the NLR clouds is significantly higher than that of the emission from the torus. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.An introduction to the Zooniverse
AAAI Workshop - Technical Report WS-13-18 (2013) 103
Abstract:
The Zooniverse (zooniverse.org) began in 2007 with the launch of Galaxy Zoo, a project in which more than 175,000 people provided shape analyses of more than 1 million galaxy images sourced from the Sloan Digital Sky Survey. These galaxy 'classifications', some 60 million in total, have subsequently been used to produce more than 50 peer-reviewed publications based not only on the original research goals of the project but also because of serendipitous discoveries made by the volunteer community. Based upon the success of Galaxy Zoo the team have gone on to develop more than 25 web-based citizen science projects, all with a strong research focus in a range of subjects from astronomy to zoology where human-based analysis still exceeds that of machine intelligence. Over the past 6 years Zooniverse projects have collected more than 300 million data analyses from over 1 million volunteers providing fantastically rich datasets for not only the individuals working to produce research from their projects but also the machine learning and computer vision research communities. The Zooniverse platform has always been developed to be the 'simplest thing that works', implementing only the most rudimentary algorithms for functionality such as task allocation and user-performance metrics. These simplifications have been necessary to scale the Zooniverse so that the core team of developers and data scientists can remain small and the cost of running the computing infrastructure relatively modest. To date these simplifications have been acceptable for the data volumes and analysis tasks being addressed. This situation however is changing: next generation telescopes such as the Large Synoptic Sky Telescope (LSST) will produce data volumes dwarfing those previously analyzed. If citizen science is to have a part to play in analyzing these next-generation datasets then the Zooniverse will need to evolve into a smarter system capable for example of modeling the abilities of users and the complexities of the data being classified in real time. In this session we will outline the current architecture of the Zooniverse platform and introduce new functionality being developed that should be of interest to the HCOMP community. Our platform is evolving into a system capable of integrating human and machine intelligence in a live environment. Data APIs providing realtime access to 'event streams' from the Zooniverse infrastructure are currently being tested as well as API endpoints for making decisions about for example what piece of data to show next to a volunteer as well as when to retire a piece of data from the live system because a consensus has been reached.Broad-band monitoring tracing the evolution of the jet and disc in the black hole candidate X-ray binary MAXI J1659-152
Monthly Notices of the Royal Astronomical Society 436:3 (2013) 2625-2638
Abstract:
MAXI J1659-152 was discovered on 2010 September 25 as a new X-ray transient, initially identified as a gamma-ray burst, but was later shown to be a new X-ray binary with a black hole as the most likely compact object. Dips in the X-raylight curves have revealed that MAXI J1659-152 is the shortest period black hole candidate identified to date. Here we present the results of a large observing campaign at radio, submillimetre, near-infrared (nIR), optical and ultraviolet (UV) wavelengths. We have combined this very rich data set with the available X-ray observations to compile a broad-band picture of the evolution of this outburst. We have performed broad-band spectral modelling, demonstrating the presence of a spectral break at radio frequencies and a relationship between the radio spectrum and X-ray states. Also, we have determined physical parameters of the accretion disc and put them into context with respect to the other parameters of thebinary system. Finally, we have investigated the radio-X-ray and nIR/optical/UV-X-ray correlations up to ̃3 yr after the outburst onset to examine the link between the jet and the accretion disc, and found that there is no significant jet contribution to the nIR emission when the source is in the soft or intermediateX-ray spectral state, consistent withour detection of the jet break at radio frequencies during these states. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes
Astronomy and Astrophysics 552 (2013)
Abstract:
Faraday rotation measurements using the current and next generation of low-frequency radio telescopes will provide a powerful probe of astronomical magnetic fields. However, achieving the full potential of these measurements requires accurate removal of the time-variable ionospheric Faraday rotation contribution. We present ionFR, a code that calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. ionFR uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. We describe applications of this code for the calibration of radio polarimetric observations, and demonstrate the high accuracy of its modeled ionospheric Faraday rotations using LOFAR pulsar observations. These show that we can accurately determine some of the highest-precision pulsar rotation measures ever achieved. Precision rotation measures can be used to monitor rotation measure variations-either intrinsic or due to the changing line-of-sight through the interstellar medium. This calibration is particularly important for nearby sources, where the ionosphere can contribute a significant fraction of the observed rotation measure. We also discuss planned improvements to ionFR, as well as the importance of ionospheric Faraday rotation calibration for the emerging generation of low-frequency radio telescopes, such as the SKA and its pathfinders. © 2013 ESO.Detecting highly dispersed bursts with next-generation radio telescopes
Monthly Notices of the Royal Astronomical Society 436:1 (2013) 371-379